Главная - Маленькая кухня
Коллекция самодельных измерительных приборов проект. Проект по физике домашние измерительные приборы

МАОУ лицей №64 г. Краснодара Физика рук-ль Спицына Л.И.

Работа - участник Всероссийского фестиваля педагогического творчества в 2017 году

На сайте сайт размещается для обмена опытом работы с коллегами

САМОДЕЛЬНЫЕ ПРИБОРЫ ДЛЯ УЧЕБНЫХ ИССЛЕДОВАНИЙ

В ЛАБОРАТОРНОМ ПРАКТИКУМЕ по ФИЗИКЕ

Научно-исследовательский проект

"Физика и физические задачи повсюду существуют

в том мире, в котором мы живем, работаем,

любим, умираем." - Дж.Уокер.

Введение.

С раннего детства, когда с легкой руки воспитателя детского сада Зои Николаевны, ко мне приклеилось «Коля-физик», я интересуюсь физикой как наукой теоретической и прикладной.

Еще в начальной школе, изучая доступные мне материалы в энциклопедиях, определил для себя круг наиболее интересных вопросов; уже тогда радиоэлектроника стала основой внешкольного времяпрепровождения. В средней школе стал уделять особое внимание таким вопросам современной науки, как ядерная и волновая физика. В профильном классе на первый план вышло изучение проблем радиационной безопасности человека в современном мире.

Увлеченность конструированием пришла вместе с книгой Ревича Ю. В. «Занимательная электроника», моими настольными книгами стали трехтомный «Элементарный учебник физики» под редакцией Ландсберга Г. С., «Курс физики» Детлафа А.А. и другие.

Каждый человек, считающий себя «технарём», должен учиться воплощать свои, пусть даже самые фантастические замыслы и идеи, в самостоятельно изготовленные действующие модели, приборы и устройства, чтобы с их помощью подтвердить или опровергнуть эти замыслы. Тогда, завершив общее образование, он получает возможность искать пути, следуя которым сумеет идеи свои воплотить в жизнь.

Актуальность темы «Физика своими руками» определяется, во-первых, возможностью технического творчества для каждого человека, во-вторых, возможностью использовать самодельные приборы в образовательных целях, что обеспечивает развитие интеллектуальных и творческих способностей обучающегося.

Развитие коммуникационных технологий и поистине безграничные образовательные возможности Интернет-сети позволяют сегодня каждому желающему использовать их во благо своего развития. Что я хочу этим сказать? Только то, сейчас каждый, кто захочет, может «нырнуть» в бесконечный океан доступных сведений о чем угодно, в любой форме: видео, книги, статьи, сайты. Сегодня существует множество различных сайтов, форумов, каналов «YOUTUBE», которые с радостью поделятся с тобой знаниями в любой области, а в частности, в области прикладных радиоэлектроники, механики, физики атомного ядра и т.д. Было бы очень здорово, если бы больше людей имело тягу к освоению чего-то нового, тягу к познанию мира и позитивному его преобразованию.

Задачи, решаемые в данной работе:

- реализовать единство теории и практики через создание самодельныхучебных приборов, действующих моделей;

Применить теоретические знания, полученные в лицее, для выбора конструкции моделей, используемых для создания самодельного учебного оборудования;

На основе теоретических исследований физических процессов выбрать необходимое оборудование, соответствующее условиям эксплуатации;

Использовать доступные детали, заготовки для их нестандартного применения;

Популяризировать прикладную физику в молодежной среде, в том числе среди одноклассников, через привлечение их ко внеурочной деятельности;

Способствовать расширению практической части образовательного предмета;

Пропагандировать значимость творческих способностей обучающихся в познании окружающего мира.

ОСНОВНАЯ ЧАСТЬ

В конкурсном проекте представлены изготовленные учебные модели и устройства:

Миниатюрный прибор оценки степени радиоактивности на основе счетчика Гейгера-Мюллера СБМ-20(самого доступного из существующих образцов).

Действующая модель диффузионной камеры Ландсгорфа

Комплекс для наглядного экспериментального определения величины скорости света в металлическом проводнике.

Небольшой прибор для измерения реакции человека.

Представляю теоретические основы физических процессов, принципиальные схемы и особенности конструкции приборов.

§1. Миниатюрный прибор оценки степени радиоактивности на основе счетчика Гейгера-Мюллера - дозиметр собственного изготовления

Идея собрать дозиметр посещала меня очень долго, и однажды руки дошли, я его собрал. На фото слева - счетчик Гейгера промышленного производства, справа - дозиметр на его основе.

Известно, что основным элементом дозиметра является датчик излучения. Самый доступным из них является счетчик Гейгера-Мюллера, принцип действия которого основан на том, что ионизирующие частицы могут ионизировать вещество - выбивать электроны с внешних электронных слоев. Внутри счетчика Гейгера находится инертный газ аргон. По сути, счетчик - конденсатор, который пропускает ток только тогда, когда внутри образуются положительные катионы и свободные электроны. Принципиальная схема включения устройства приведена на рис. 170. Одной пары ионов недостаточно, но из-за относительно высокой разности потенциалов на выводах счетчика происходит лавинная ионизация и возникает достаточно большой ток, чтобы можно было засечь импульс.

В роли пересчетного устройства выбрана схема на основе микроконтроллера кампании Atmel - Atmega8A. Индикация значений осуществляется при помощи LCD-дисплея от легендарного Nokia 3310, и звуковая индикация - посредством пьезоэлемента, взятого из будильника. Высокое напряжение для питания счетчика достигается при помощи миниатюрного трансформатора и умножителя напряжения на диодах и конденсаторах.

Принципиальная электрическая схема дозиметра :

Прибор показывает значение мощности дозы γ и рентгеновского излучения в микрорентгенах, с верхним пределом в 65мР/ч.

При снятии крышки-фильтра открывается поверхность счетчика Гейгера и прибор может фиксировать β - излучение. Замечу - лишь фиксировать, не измерять, так как степень активности β - препаратов измеряется плотностью потока - количество частиц на единицу площади. Да и эффективность к β - излучению у СБМ-20 очень низка, рассчитан он только для фотонного излучения.

Схема понравилась мне тем, что в ней грамотно реализована высоковольтная часть - количество импульсов для зарядки конденсатора питания счетчика пропорционально количеству регистрируемых импульсов. Благодаря этому прибор уже полтора года без выключений работает, истратив 7 батареек типа АА.

Почти все компоненты для сборки я закупил на адыгейском радиорынке, за исключением счетчика Гейгера - его приобрел в Интернет-магазине.

Надежность и эффективность прибора подтверждается таким образом: непрерывная полуторогодовая работа прибора и возможность постоянного контроля показывают, что:

Показания прибора колеблются от 6 до 14 микрорентген в час, что не превышает допустимую норму в 50 микрорентген в час;

Радиационный фон в учебных кабинетах, в микрорайоне моего проживания, непосредственно в квартире полностью соответствует нормам радиационной безопасности (НРБ - 99/2009), утвержденные Постановление главного государственного санитарного врача Российской федерации от 07 июля 2009 года № 47.

В повседневной жизни, оказывается, человеку не так-то просто попасть в область с повышенной радиоактивностью. Если это случится - прибор осведомит меня звуковым сигналом, что делает самодельный прибор гарантом радиационной безопасности его конструктора.

§ 2. Действующая модель диффузионной камеры Лангсдорфа.

2.1. Основы радиоактивности и способы ее изучения.

Радиоактивность - способность атомных ядер самопроизвольно или под действием внешнего излучения распадаться. Открытие этого замечательного свойства некоторых химических веществ принадлежит Анри Беккерелю в феврале 1896 года. Радиоактивность - явление, доказывающие сложное устройство атомного ядра, при котором ядра атомов распадаются на части, при этом почти все радиоактивные вещества имеют определенный период полураспада - промежуток времени, за который в образце распадется половина всех атомов радиоактивного вещества. При радиоактивном распаде из ядер атомов испускаются ионизирующие частицы. Это могут быть ядра атомов гелия - α-частицы, свободные электроны или позитроны - β - частицы, γ - лучи - электромагнитные волны. К ионизирующим частицам еще относят протоны, нейтроны, обладающие высокой энергией.

Сегодня известно, что подавляющее большинство химических элементов имеют радиоактивные изотопы. Есть такие изотопы и среди молекул воды - источника жизни на Земле.

2.2. Как обнаружить ионизирующее излучение?

Детектировать, то есть обнаружить ионизирующие излучения в настоящее время можно при помощи счетчиков Гейгера-Мюллера, сцинтилляционных детекторов, ионизационных камер, трековых детекторов. Последние могут не только обнаружить факт наличия излучения, но и позволяют наблюдателю увидеть, как летели частицы по форме трека. Сцинтилляционные детекторы хороши высокой чувствительностью и пропорциональным энергии частиц световыходом - количеством фотонов, излучаемых при поглощении веществом определенного количества энергии.

Известно, что у каждого изотопа различная энергия испускаемых частиц, поэтому при помощи сцинтилляционного детектора можно идентифицировать изотоп без химического или спектрального анализа. При помощи трековых детекторов тоже можно идентифицировать изотоп, поместив камеру в однородное магнитное поле, при этом треки будут искривлены.

Ионизирующие частицы радиоактивных тел обнаружить, изучать их характеристики можно с помощью специальных приборов, получивших название «трековые». К ним относят приборы, которые могут показать след движущейся ионизирующей частицы. Это могут быть: камеры Вильсона, диффузионные камеры Ландсгорфа, искровые и пузырьковые камеры.

2.3. Диффузионная камера собственного изготовления

Вскоре после того, как самодельный дозиметр стал стабильно работать, я понял, что дозиметра мне не достаточно и нужно сделать что-нибудь еще. В итоге я собрал диффузионную камеру, изобретенную Александром Лангсдорфом в 1936 году. И сегодня для научных исследований может быть использована камера, схема которой представлена на рисунке:

Диффузионная - усовершенствованная камера Вильсона. Усовершенствование заключается в том, что для получения перенасыщенного пара используется не адиабатное расширение, а диффузия паров из нагретой области камеры в холодную, то есть пар, находящийся в камере, преодолевает некий градиент температур.

2.4. Особенности процесса сборки камеры

Для работы устройства обязательным условием является наличие перепада температур в 50-700С, при этом нагревать одну сторону камеры нецелесообразно, т.к. спирт будет быстро испаряться. Значит, нужно охлаждать нижнюю часть камеры до - 30°С. Такую температуру может обеспечить испаряющийся сухой лед или элементы Пельтье. Выбор пал в пользу последних, ибо доставать лед мне было, честно, лень, да и порция льда послужит один раз, а элементы Пельтье - сколько угодно. Принцип их работы основан на эффекте Пельтье - переносе теплоты при протекании электрического тока.

Первый эксперимент после сборки дал ясно знать, что одного элемента оказалось недостаточно для получения необходимого перепада температур, пришлось использовать два элемента. На них подается разное напряжение, на нижний - большее, на верхний - меньшее. Это связано вот с чем: чем меньшую температуру необходимо достичь в камере, тем больше теплоты нужно отводить.

Когда я раздобыл элементы, мне пришлось немало поэкспериментировать, чтобы достичь нужной температуры. Нижнюю часть элемента охлаждает компьютерный радиатор с тепловыми (аммиачными) трубками и двумя 120-миллиметровыми кулерами. По приблизительным расчетам, кулер рассеивает в воздух около 100 ватт тепла. С источником питания я решил не заморачиваться, поэтому использовал импульсный компьютерный, суммарной мощностью 250 ватт, этого после проведения измерений оказалось достаточно.

Далее, я соорудил корпус из листовой фанеры для цельности и удобства хранения прибора. Получилось не совсем аккуратно, но довольно практично. Саму камеру, где образуются треки движущихся заряженных частиц или фотонных лучей, я сделал из обрезанной трубы и оргстекла, но вертикальный обзор не давал хорошей контрастности изображению. Я ее сломал и выбросил, сейчас использую в качестве прозрачной камеры стеклянный бокал. Дешево и сердито. Внешний вид камеры - на фото.

В качестве "сырья" для работы может быть использован как изотоп тория-232, находящийся в электроде для аргонодуговой сварки (применяется он в них для ионизации воздуха возле электрода и как следствие - более легкого зажигания дуги), так и дочерние продукты распада (ДПР) радона, содержащегося в воздухе, поступающего, в основном, с водой и газом. Чтобы собрать ДПР использую таблетки активированного угля - неплохой абсорбент. Чтобы интересующие нас ионы притягивались к таблетке, к ней подключаю умножитель напряжения, отрицательным выводом.

2.5. Ловушка ионов.

Еще один важный элемент конструкции - ловушка ионов, образующихся в результате ионизации атомов ионизирующими частицами. Конструктивно представляет собой умножитель сетевого напряжения с коэффициентом умножения равным 3, причем на выходе из умножителя имеют место быть отрицательные заряды. Это обусловлено тем, что в результате ионизации с внешней атомной оболочки выбиваются электроны, вследствие чего атом становится катионом. В камере использована ловушка, схема которой основана на использовании умножителя напряжения Кокрофта - Уолтона.

Электрическая схема умножителя имеет вид:

Эксплуатация камеры, ее результаты

Диффузионная камера после многочисленных пробных запусков, была использована в качестве экспериментального оборудования при выполнении лабораторной работы по теме "Изучение треков заряженных частиц", состоявшейся в 11 классе МАОУ лицея № 64 одиннадцатого февраля 2015 года. Фотографии треков, полученных посредством камеры, были зафиксированы на интерактивной доске, и использованы для определения вида частиц.

Как и в промышленном оборудовании, в самодельной камере удалось наблюдать следующее: чем шире трек, тем больше там частиц, следственно, более толстые треки принадлежат альфа-частицам, имеющим большие радиус и массу, а как следствие, большую кинетическую энергию, большее число ионизированных атомов на миллиметр пролета.

§ 3. Комплекс для наглядного экспериментального определения величины

скорости света в металлическом проводнике.

Начну, пожалуй, с того, что скорость света всегда для меня считалась чем-то невероятным, непостижимым, в какой-то степени невозможным, пока я не нашел в Интернете принципиальные электрические схемы валявшегося у меня двухканального осциллографа со сломанной синхронизацией, что без ремонта не давало возможности исследованию форм электрических сигналов. Но судьба была весьма благосклонна ко мне, мне удалось определить причину поломки блока синхронизации и устранить ее. Выяснилось, что неисправна была микросборка - коммутатор сигналов. По схеме из Интернета сделал копию этой микросборки из деталей, купленных на любимом радиорынке.

Взял экранированный телевизионный двадцатиметровый провод, собрал простой генератор высокочастотных сигналов на инверторах 74HC00. Н один конец провода подавал сигнал, параллельно снимая его из той же точки первым каналом осциллографа, со второго сигнал снимал вторым каналом, фиксировал разницу во времени помеж фронтов получаемых сигналов.

Длину провода - 20 метров разделил на это время, получил нечто похожее на 3*108 м/с.

Прилагаю принципиальную электрическую схему (куда же без нее?):

Внешний вид высокочастотного генератора представлен на фото. Используя доступное (бесплатное) программное обеспечение "Sprint-Layout 5.0" создал чертеж платы.

3. 1. Немного об изготовлении плат:

Саму плату, как обычно, сделал по технологии "ЛУТ" - народная лазерно-утюжная технология, разработанная обитателями просторов Интернета. Технология заключается в следующем: берется одно или двухслойный фольгированный стеклотекстолит, тщательно обрабатывается наждачной бумагой до блеска, затем ветошью, смоченной бензином или спиртом. Далее на лазерном принтере распечатывается рисунок, который необходимо нанести на плату. В зеркальном отражении на глянцевую бумагу печатается рисунок, а потом при помощи утюга тонер на глянцевой бумаге переносится на медную фольгу, покрывающую текстолит. Позже под струей теплой воды бумага скатывается пальцами с платы, остается плата с нанесенным рисунком. Теперь погружаем этот продукт в раствор хлорного железа, помешиваем порядка пяти минут, затем вынимаем плату, на которой медь осталась только под тонером из принтера. Наждачной бумагой удаляем тонер, опять обрабатываем спиртом или бензином, дальше покрываем паяльным флюсом. При помощи паяльника и залуженной оплетки телевизионного кабеля водим по плате, тем самым покрывая медь слоем олова, необходимого для последующей пайки компонентов и для защиты меди от коррозии.

Отмываем от флюса плату при помощи ацетона, например. Производим пайку всех компонентов, проводов и покрываем токонепроводящим лаком. Ждем сутки, пока лак сохнет. Готово, плата готова к работе.

Таким методом пользуюсь далеко не первый год, ни разу способ меня не подвел.

§ 4. Небольшое устройство для измерения реакции человека.

Работа по совершенствованию этого прибора идет и сейчас.

Используется устройство следующим образом: после подачи питания на микроконтроллер прибор переходит в режим циклического перебора значений некой переменной «С». После нажатия кнопки программа приостанавливается и присваивает значение, которое в тот момент было в переменной, значение которой циклически менялось. Таким образом, в переменной «С» получается случайное число. Сказали бы Вы: «А почему бы не воспользоваться функцией random() или чем-то вроде этого?».

А дело в том, что в языке, на котором я пишу - в BASCOM AVR, нет такой функции из-за его неполноценного набора команд, так как это язык для микроконтроллеров с малым объемом оперативной памяти, малой вычислительной способностью. После нажатия кнопки программа зажигает на табло четыре нуля и запускает таймер, ожидающий промежуток времени, пропорциональный значению переменной «С». После истечения заданного промежутка времени программа зажигает четыре восьмерки и запускает таймер, считающий время до того момента, пока не будет нажата кнопка.

Если нажать кнопку в момент между зажиганием нулей и восьмерок, то программа остановится, выведет на дисплей прочерки. Если кнопка была нажата после появления восьмерок, то программа выведет на дисплей время в миллисекундах прошедшее после зажжения восьмерок и до нажатия кнопки, это и будет время реакции человека. Остается лишь вычислить среднее арифметическое результатов нескольких измерений.

В данном устройстве используется микроконтроллер фирмы «Atmel» модель «ATtiny2313». На своем борту микросхема имеет два килобайта флэш-памяти, 128 байт оперативной, восьмибитный и десятибитный таймеры, четыре канала широтно-импульсной модуляции (ШИМ), пятнадцать полностью доступных портов ввода-вывода.

Для вывода информации используется семисегментный четырехразрядный светодиодный индикатор с общим анодом. Индикация реализована динамическая, то есть все сегменты всех разрядов соединены параллельно, а общие выводы не параллельны. Таким образом, получается у индикатора двенадцать выводов: четыре вывода - общие для разрядов, остальные восемь распределены так: семь сегментов для цифр и один для точки.

Заключение

Физика - фундаментальная естественная наука, изучение которой позволяет познавать окружающий ребенка мир через деятельность учебную, изобретательскую, конструкторскую, творческую.

Ставя цель: сконструировать физические приборы для использования их в образовательном процессе, я ставил задачу популяризировать физику, как науку не только теоретическую, но и прикладную, среди сверстников, доказывая, что понять, почувствовать, принять окружающий нас мир можно только через познание и творчество. Как гласит пословица «лучше один раз увидеть, чем сто раз услышать», то есть, чтобы хоть чуть-чуть объять необъятный мир, нужно научиться взаимодействовать с ним не только посредством бумаги и карандаша, но и с помощью паяльника и проводов, деталей и микросхем.

Апробация и эксплуатация самодельных приборов доказывает их жизнеустойчивость и конкурентноспособность.

Я бесконечно благодарен тому, что мою жизнь, начиная с трехлетнего возраста, направил в техническое, изобретательско - конструкторское русло мой дедушка, Диденко Николай Андреевич, более двадцати лет преподававший физику и математику в Абадзехской средней школе, и более двадцати лет работавший программистов в научно-техническом центре РОСНЕФТЬ.

Список использованной литературы .

Наливайко Б.А. Справочник Полупроводниковые приборы. Сверхвысокочастотные диоды. МГП "РАСКО" 1992, 223 с.

Мякишев Г. Я., Буховцев Б. Б. Физика 11 класс, М., Просвещение, 2014, 400 с.

Ревич Ю. В. Занимательная электроника.2-е изд-е, 2009 БХВ-Петербург, 720 с

Том Тит. Научные забавы: физика без приборов, химия без лаборатории. М., 2008, 224 с.

Чечик Н. О. Файнштейн С.М. Электронные умножители, ГИТТЛ 1957, 440 с.

Шилов В.Ф. Самодельные приборы по радиоэлектронике, М., Просвещение, 1973, 88 с.

Википедия - свободная энциклопедия. Режим доступа

На школьных уроках физики учителя всегда говорят, что физические явления повсюду в нашей жизни. Только мы частенько об этом забываем. Меж тем, удивительное рядом! Не думайте, что для организации физических опытов на дому вам потребуется что-то сверхъестественное. И вот вам несколько доказательств;)

Магнитный карандаш

Что необходимо приготовить?

  • Батарейку.
  • Толстый карандаш.
  • Медную изолированную проволоку диаметром 0,2–0,3 мм и длиной несколько метров (чем больше, тем лучше).
  • Скотч.

Проведение опыта

Намотайте проволоку вплотную виток к витку на карандаш, не доходя до его краев по 1 см. Кончился один ряд - наматывайте другой сверху в обратную сторону. И так, пока не закончится вся проволока. Не забудьте оставить свободными два конца проволоки по 8–10 см. Чтобы витки после намотки не разматывались, закрепите их скотчем. Зачистите свободные концы проволоки и подсоедините их к контактам батарейки.

Что произошло?

Получился магнит! Попробуйте поднести к нему маленькие железные предметы - скрепку, шпильку. Притягиваются!

Повелитель воды

Что необходимо приготовить?

  • Палочку из оргстекла (например, ученическую линейку или обычную пластмассовую расчёску).
  • Сухую тряпочку из шёлка или шерсти (например, шерстяной свитер).

Проведение опыта

Откройте кран, чтобы текла тонкая струйка воды. Сильно потрите палочку или расчёску о приготовленную тряпочку. Быстро приблизьте палочку к струйке воды, не касаясь её.

Что произойдёт?

Струя воды изогнётся дугой, притягиваясь к палочке. Попробуйте то же самое сделать с двумя палочками и посмотрите, что получится.

Волчок

Что необходимо приготовить?

  • Бумагу, иголку и ластик.
  • Палочку и сухую шерстяную тряпочку из предыдущего опыта.

Проведение опыта

Управлять можно не только водой! Вырежьте полоску бумаги шириной 1–2 см и длиной 10–15 см, изогните по краям и посередине, как показано на рисунке. Воткните иголку острым концом в ластик. Уравновесьте заготовку-волчок на иголке. Подготовьте «волшебную палочку», потрите её о сухую тряпочку и поднесите к одному из концов бумажной полоски сбоку или сверху, не касаясь её.

Что произойдёт?

Полоска станет раскачиваться вверх-вниз, как качели, или будет крутиться, как карусель. А если вы сможете вырезать из тонкой бумаги бабочку, то опыт будет ещё интереснее.

Лед и пламя

(опыт проводится в солнечный день)

Что необходимо приготовить?

  • Небольшую чашку с круглым дном.
  • Кусочек сухой бумажки.

Проведение опыта

Налейте в чашку воды и поставьте в морозилку. Когда вода превратится в лёд, выньте чашку и поставьте в ёмкость с горячей водой. Через некоторое время лёд отделится от чашки. Теперь выйдите на балкон, положите кусочек бумажки на каменный пол балкона. Куском льда сфокусируйте солнце на бумажке.

Что произойдёт?

Бумага должна обуглиться, ведь в руках уже не просто лед… Вы догадались, что сделали лупу?

Неправильное зеркало

Что необходимо приготовить?

  • Прозрачную банку с плотно закрывающейся крышкой.
  • Зеркало.

Проведение опыта

Налейте в банку воды с излишком и закройте крышкой, чтобы внутрь не попали пузыри воздуха. Приставьте банку к зеркалу крышкой вверх. Теперь можно смотреться в «зеркало».

Приблизьте лицо и посмотрите внутрь. Там будет уменьшенное изображение. Теперь начинайте наклонять банку в сторону, не отрывая от зеркала.

Что произойдёт?

Отражение вашей головы в банке, само собой, будет тоже наклоняться, пока не окажется перевёрнутым вниз, при этом ног так и не будет видно. Поднимите банку, и отражение вновь перевернётся.

Коктейль с пузырьками

Что необходимо приготовить?

  • Стакан с крепким раствором поваренной соли.
  • Батарейку от карманного фонарика.
  • Два кусочка медной проволоки длиной примерно по 10 см.
  • Мелкую наждачную бумагу.

Проведение опыта

Зачистите концы проволоки мелкой наждачной шкуркой. Подсоедините к каждому полюсу батарейки по одному концу проволочек. Свободные концы проволочек опустите в стакан с раствором.

Что произошло?

Вблизи опущенных концов проволоки будут подниматься пузырьки.

Батарейка из лимона

Что необходимо приготовить?

  • Лимон, тщательно вымытый и насухо вытертый.
  • Два кусочка медной изолированной проволоки примерно 0,2–0,5 мм толщиной и длиной 10 см.
  • Стальную скрепку для бумаги.
  • Лампочку от карманного фонарика.

Проведение опыта

Зачистите противоположные концы обеих проволок на расстоянии 2–3 см. Вставьте в лимон скрепку, прикрутите к ней конец одной из проволочек. Воткните в лимон в 1–1,5 см от скрепки конец второй проволочки. Для этого сначала проткните лимон в этом месте иголкой. Возьмите два свободных конца проволочек и приложи к контактам лампочки.

Что произойдёт?

Лампочка загорится!

Искусственный смерч. В одной из книг Н. Е. Жуковского описана следующая установка для получения искусственного смерча. На расстоянии 3 м над чаном с водой помещается полый шкив диаметром 1 м, имеющий несколько радиальных перегородок (рис. 119). При быстром вращении шкива навстречу ему поднимается из чана крутящийся водяной смерч. Объяснить явление. Какова причина образования смерча в природе?

«Универсальный барометр» М. В. Ломоносова (рис. 87). Прибор состоит из наполненной ртутью барометрической трубки, имеющей наверху шар А. Трубка соединена капилляром В с другим шаром, содержащим сухой воздух. Прибор служит для измерения ничтожных изменений силы атмосферного давления. Разобраться, как действует этот прибор.

Прибор Н. А. Любимова. Профессор Московского университета Н. А. Любимов был первым ученым, который экспериментально исследовал явление невесомости. Один из его приборов (рис. 66) представлял собой панель l с петлями, которая могла падать вдоль направляющих вертикальных проволок. На панели l укреплен сосуд с водой 2. Внутри сосуда с помощью стержня, проходящего через крышку сосуда, помещена большая пробка 3. Вода стремится вытолкнуть пробку, и последняя, растягивая пру. жину 4, удерживает указательную стрелку на правой стороне экрана. Сохранит ли стрелка свое положение относительно сосуда, если прибор будет падать?

«Использование самодельных приборов – один из способов активации познавательной деятельности учащихся при изучении физики»

Есенжулова А.Д

2016 год



Знаете ли вы, сколь силён может быть один человек

Фёдор Достоевский

Аннотация

Данный проект предназначен для учителей физики и учащихся 7-11 классов. Он даёт возможность уйти от «меловой» физики, направлен на привлечение школьников к изготовлению приборов и на выявление творческих способностей детей.



Актуальность заключается в том, что изготовление приборов ведет за собой не только повышение уровня знаний, но и выявляет основное направление деятельности учащихся. При работе над прибором мы уходим от «меловой» физики. Оживает сухая формула, материализуется идея, возникает полное и четкое понимание. С другой стороны, подобная работа является хорошим примером общественно-полезного труда: удачно сделанные самодельные приборы могут значительно пополнить оборудование школьного кабинета. Самодельные приборы имеют и другую постоянную ценность: их изготовление, с одной стороны, развивает у учителя и учащихся практические умения и навыки, а с другой - свидетельствует о творческой работе, о методическом росте учителя.



Выход из затруднительного положения чаще всего бывает там, где был вход…

Карел Чапек

Проблемные вопросы

  • Стоит ли заниматься изготовлением самодельных приборов по физике, когда промышленность выпускает их в достаточном количестве и высокого качества?
  • Как без материальных затрат пополнить кабинет физики оборудованием?
  • Какие самодельные приборы надо изготавливать?

Сделать приборы, установки по физике для демонстрации физических явлений, объяснить принцип действия каждого прибора и продемонстрировать их работу.

Гипотеза

Наличие самодельных приборов в школьном кабинете физики расширяет возможности совершенствования учебного эксперимента и улучшает постановку научно - исследовательских работ.



1) изучить научную и популярную литературу по созданию самодельных приборов;

2) сделать приборы по конкретным темам, которые вызывают затруднение в понимании теоретического материала по физике;

3) сделать приборы отсутствующие в лаборатории;





Результаты диагностики

Что вам нравится при изучении физике ?

а) решение задач -19%;

б) демонстрация опытов - 21%;

в) чтение учебника дома - 4%;

г) рассказ учителем нового материала - 17%;

д) самостоятельное выполнение опытов -36%;

е) ответ у доски -3%.

Какое домашнее задание вы предпочитаете выполнять?

а) чтение учебника -22%;

б) решение задач из учебника -20%;

в) наблюдение физических явлений -40%;

г) составление задач -7%;

д) изготовление простых устройств, моделей -8 %;

е) решение трудных задач – 3 %.

На каком уроке вам интересно?

а) на контрольной работе - 3%;

б) на лабораторной работе - 60%;

в) на уроке решения задач - 8%;

г) на уроке изучения нового материала - 22%;

д) не знаю -7 %.



Самодельный прибор

Своими руками





Самодельный прибор

Дробилка





Самодельный прибор

Швейная машина

Ученик 9 ж Тищенко А



Самодельный прибор













Жангабаев А 10 Д класс

Нуранов А 10 Г класс



1. Самодельные физические установки обладает большей дидактической отдачей.

2. Самодельные установки создаются под конкретные условия.

3. Самодельные установки априорно более надёжны.

4. Самодельные установки намного дешевле, чем государственные приборы.

5. Самодельные установки часто определяют судьбу школьника.



Один опыт я ставлю выше, чем тысячу мнений,

рождённых только воображением

М.Ломоносов

Заключение

Замечательно, если наш проект «зарядит» творческим оптимизмом, заставит кого-то поверить в свои силы. Ведь в этом и состоит его главная цель: сложное представить доступным, стоящим любых усилий и способным дать человеку ни с чем не сравнимую радость постижения, открытия. Возможно, наш проект взбодрит кого-то на творчество. Ведь творческая бодрость, как крепкая упругая пружина, затаившая заряд мощного удара. Не зря гласит мудрый афоризм: «Только начинающий творец всемогущ!»



Предложение:

Оценку состояния и работы школьных кабинетов физики проводить не по сомнительным миллионам рублей, затраченным на сомнительное псевдооборудование, а по количеству самодельных установок, охвату ими школьного курса физики и учеников школы.



Мастера… Профессионалы

Те, что в жизни постичь смогли

Щедрость камня, душу металла

Свежесть формулы, нрав земли

Мастера. Мастаки. Умельцы

Понимающие до глубин

Механизм станка и сердца

Ход смычка или гул турбин

Руки вещие простирая

К перекрёсткам звёздных миров

Время движется мастерами и надеется на мастеров!

… А они стоят, будто крепости,

В правоте своего труда

И не могут иначе

И требуются

Роберт Рождественский



Литература

1. Н.М. Шахмаев Физический эксперимент в средней школе.

2. Л.И.Анциферов. Самодельные приборы для физического практикума.

3. Н.М.Маркосова. Изучение ультразвука в курсе физики.

4. Н.М.Зверева. Активизация мышления учащихся на уроках физики.

5. С.Павлович. Приборы и модели по неживой природе.

6. И.Я.Ланина. Не уроком единым.

7. С.А.Хорошавин. Физико-техническое моделирование.

8. Л.И Анциферов « Самодельные приборы для Физического практикума» Москва Просвещение 1985 г

9. А.И Уханов « Самодельные приборы по физике» Саратов СГУ 1978

МОУ «Средняя общеобразовательная школа №2» п. Бабынино

Бабынинского района Калужской области

X научно-исследовательская конференция

«Одаренные дети – будущее России»

Проект «Физика своими руками»

Подготовили ученицы

7 «Б» класса Ларькова Виктория

7 «В» класса Калиничева Мария

Руководитель Кочанова Е.В.

п. Бабынино, 2018 г

Введение стр.3

Теоретическая часть стр.5

Экспериментальная часть

Модель фонтана стр.6

Сообщающиеся сосуды стр. 9

Заключение стр. 11

Список литературы стр. 13

Введение

В этом учебном году мы окунулись в мир очень сложной, но интересной науки, необходимой каждому человеку. С первых уроков физика нас увлекла, хотелось узнавать все больше нового. Физика – это не только физические величины, формулы, законы, но и опыты. Физические опыты можно делать с чем угодно: карандашами, стаканами, монетами, пластиковыми бутылками.

Физика – это экспериментальная наука, поэтому создание приборов своими руками способствует лучшему усвоению законов и явлений. Много различных вопросов возникает при изучении каждой темы. Учитель, конечно, может ответить на них, но насколько интересно и увлекательно добыть ответы самому, тем более используя при этом приборы, сделанные своими руками.

Актуальность: Изготовление приборов не только способствует повышению уровня знаний, но является одним из способов активизации познавательной и проектной деятельности учащихся при изучении физики в основной школе. С другой стороны, такая работа служит хорошим примером общественно-полезного труда: удачно сделанные самодельные приборы могут значительно пополнить оборудование школьного кабинета. Изготавливать приборы на месте своими силами можно и нужно. Самодельные приборы имеют и другую ценность: их изготовление, с одной стороны, развивает у учителя и учащихся практические умения и навыки, а с другой - свидетельствует о творческой работе. Цель: Сделать прибор, установку по физике для демонстрации физических опытов своими руками, объяснить его принцип действия, продемонстрировать работу прибора.
Задачи:

1. Изучить научную и популярную литературу.

2. Научиться применять научные знания для объяснения физических явлений.

3. Сделать приборы в домашних условиях и продемонстрировать их работу.

4. Пополнение кабинета физики самодельными приборами, изготовленными из подручных материалов.

Гипотеза: Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке.

Продукт проекта: приборы, сделанные своими руками, демонстрация опытов.

Результат проекта: заинтересованность учащихся, формирование представления у них о том, что физика как наука не оторвана от реальной жизни, развитие мотивации к обучению физики.

Методы исследования: анализ, наблюдение, эксперимент.

Работа проводилась по следующей схеме:

    Изучение информации из разных источников по данной проблеме.

    Выбор методов исследования и практическое овладение ими.

    Сбор собственного материала – комплектование подручных материалов, проведение опытов.

    Анализ и формулировка выводов.

I . Основная часть

Физика – это наука о природе. Она изучает явления, которые происходят и в космосе, и в земных недрах, и на земле, и в атмосфере – словом, повсюду. Такие явления называются физическими явлениями. Наблюдая незнакомое явление, физики стараются понять, как и почему оно происходит. Если, например, явление происходит быстро или редко встречается в природе, физики стремятся увидеть его ещё столько раз, сколько необходимо для того, чтобы выявить условия, при которых оно происходит, и установить соответствующие закономерности. Если есть возможность, учёные воспроизводят изучаемое явление в специально оборудованном помещении – лаборатории. Они стараются не только рассмотреть явление, но и произвести измерения. Всё это учёные – физики называют опытом или экспериментом.

Мы загорелись идеей – сделать приборы своими руками. Проводя свои научные забавы в домашних условиях, разработали основные действия, которые позволяют успешно провести опыт:

Домашние эксперименты должны соответствовать таким требованиям:

Безопасность при проведении;

Минимальные материальные затраты;

Простота по выполнению;

Ценность в изучении и понимании физики.

Нами проведено несколько опытов по различным темам курса физики 7 класса. Представим некоторые из них, интересные и в то же время простые в выполнении.

    Экспериментальная часть.

Модель фонтана

Цель: Показать простейшую модель фонтана

Оборудование:

Большая пластиковая бутылка- 5 литров, маленькая пластиковая бутылка – 0,6 литра, коктейльная трубочка, кусочек пластика.

Ход проведения опыта

    Трубочку согнем у основания буквой Г.

    Зафиксируем с помощью маленького кусочка пластика.

    В трехлитровой бутылке вырежем небольшое отверстие.

    В маленькой бутылке отрежем дно.

    Закрепим маленькую бутылку в большой с помощью крышки,как показано на фото.

    Трубочку вставим в крышку маленькой бутылки. Закрепим с помощью пластилина.

    В крышке большой бутылки прорежем отверстие.

    Нальем в бутылку воды.

    Понаблюдаем за струей воды.

Результат : наблюдаем образование фонтана воды.

Вывод: На воду в трубочке действует давление столба жидкости, находящегося в бутылке. Чем больше воды в бутылке, тем больше будет фонтан, так как давление зависит от высоты столба жидкости.



Сообщающиеся сосуды

Оборудование: верхние части от пластиковых бутылок разных сечений, резиновая трубка.

    Отрежем верхние части пластиковых бутылок, высотой 15-20см.

    Соединим части между собой резиновой трубкой.

Ход проведения опыта №1

Цель : показать расположение поверхности однородной жидкости в сообщающихся сосудах.

1.Нальем в один из получившихся сосудов воду.

2.Видим, что вода в сосудах оказалась на одном уровне.

Вывод: в сообщающихся сосудах любой формы поверхности однородной жидкости устанавливаются на одном уровне (при условии, что давление воздуха над жидкостью одинаково).

Ход проведения опыта №2

1.Пронаблюдаем за поведением поверхности воды в сосудах наполненных разными жидкостями. Нальем одинаковое количество воды и моющего средства в сообщающиеся сосуды.

2.Видим, что жидкости в сосудах оказались на разных уровнях.

Вывод : в сообщающихся сосудах неоднородные жидкости устанавливаются на разных уровнях.

Заключение

Наблюдать за опытом проводимым учителем, интересно. Проводить его самому интереснее вдвойне. Проведенный опыт с прибором, сделанным своими руками, вызывает очень большой интерес у всего класса. Такие опыты помогает лучше понять материал, установить взаимосвязи и сделать правильные выводы.

Среди учащихся седьмых классов мы провели опрос и узнали, интереснее ли уроки физики с проведением опытов, хотели бы наши одноклассники сделать прибор своими руками. Результаты получились такими:

Большинство учащихся считают, что уроки физики становятся интереснее с проведением опытов.

Больше половины опрошенных одноклассников хотели бы изготовить приборы для уроков физики.

Нам понравилось делать самодельные приборы, проводить опыты. В мире физики столько интересного, поэтому в дальнейшем будем:

Продолжать изучение этой интересной науки;

Проводить новые эксперименты.

Список литературы

1. Л. Гальперштейн «Забавная физика", Москва, «Детская литература», 1993г.

Учебное оборудование по физике в средней школе. Под редакцией А.А Покровского «Просвещения», 2014 г

2. Учебник по физике А. В. Перышкина, Е. М. Гутник «Физика» для 7 класса; 2016 г

3. Я.И. Перельман «Занимательные задачи и опыты», Москва, «Детская литература», 2015г.

4. Физика:Справ.материалы:О.Ф. Кабардин Учеб.пособие для учащихся. – 3-е изд. – М.:Просвещение, 2014 г.

5.//class-fizika.spb.ru/index.php/opit/659-op-davsif

а- Давыдов Рома Руководитель: учитель физики- Ховрич Любовь Владимировна Новоуспенка – 2008


Цель: Сделать прибор, установку по физике для демонстрации физических явлений своими руками. Объяснить принцип действия данного прибора. Продемонстрировать работу данного прибора.


ГИПОТЕЗА: Сделанный прибор, установка по физике для демонстрации физических явлений своими руками применить на уроке. При отсутствии данного прибора в физической лаборатории, данный прибор сможет заменить недостающую установку при демонстрации и объяснении темы.


Задачи: Сделать приборы вызывающие большой интерес у учащихся. Сделать приборы отсутствующие в лаборатории. сделать приборы вызывающие затруднение в понимании теоретического материала по физике.


ОПЫТ 1: Вынужденные колебания. При равномерном вращении ручки мы видим, что на груз через пружину будет передаваться действие периодически измененной силы. Изменяясь с частотой, равной частоте вращения ручки, эта сила заставит груз совершать вынужденные колебания Резонанс-это явление резкого возрастание амплитуды вынужденных колебаний.


Вынужденные колебания


ОПЫТ 2: Реактивное движение. На штативе в кольце установим воронку, к ней прикрепим трубку с наконечником. В воронку нальем воду, и когда вода начнет вытекать с конца, то трубка отклонится в противоположную сторону. Это и есть реактивное движение. Реактивное движение- это движение тела, возникающее при отделении от него с какой либо скоростью некоторой его части.


Реактивное движение


ОПЫТ 3:Звуковые волны. Зажмем в тисках металлическую линейку. Но стоит заметить, что если тисками будет выступать большая часть линейки, то, вызвав ее колебания, мы не услышим порождаемые ею волны. Но если укоротить выступающую часть линейки и тем самым увеличить частоту ее колебаний, то мы услышим порожденные Упругие волны, распространяясь в воздухе, а так же внутри жидких и твердых телах, не видимы. Однако при определенных условиях их можно услышать.


Звуковые волны.


Опыт 4: Монета в бутылке Монета в бутылке. Хотите увидеть закон инерции в действии? Приготовьте пол-литровую бутылку из-под молока, кольцо из картона шириной 25 мм и 0 100 мм и двухкопеечную монету. Поставьте кольцо на горлышко бутылки, а сверху точно напротив отверстия горлышка бутылки положите монету (рис. 8). Просунув в кольцо линейку, ударьте ею по кольцу. Если вы это сделаете резко, кольцо отлетит, а монета упадет в бутылку. Кольцо переместилось настолько быстро, что его движение не успело передаться монете и та по закону инерции осталась на месте. А потеряв опору, монета упала вниз. Если кольцо отвести в сторону медленнее, монета «почувствует» это движение. Траектория ее падения изменится, и в горлышко бутылки она не попадет.


Монета в бутылке


Опыт 5: Парящий шарик Когда вы дуете, струя воздуха поднимает шарик над трубкой. Но давление воздуха внутри струи меньше, чем давление окружающего струю «спокойного» воздуха. Поэтому шарик находится в своеобразной воздушной воронке, стенки которой образует окружающий воздух. Плавно снижая скорость струи из верхнего отверстия, нетрудно «посадить» шарик на прежнее место Для этого опыта понадобится Г-образная трубка, например стеклянная, и легкий шарик из пенопласта. Закройте верхнее отверстие трубки шариком (рис. 9) и подуйте в боковое отверстие. Вопреки ожиданию шарик не отлетит от трубки, а начнет парить над ней. Почему так происходит?


Парящий шарик


Опыт 6: Движение тела по "мертвой петле " С помощью прибора "мертвая петля" можно демонстрировать ряд опытов по динамике материальной точки по окружности. Демонстрация проводится в следующем порядке:1. Шарик скатывают по рельсам с наивысшей точки наклонных рельсов, где он удерживается электромагнитом, который питается от 24в. Шарик устойчиво описывает петлю и с некоторой скоростью вылетает с другого конца прибора2. Шарик скатывают с наименьшей высоты, когда шарик только описывает петлю, не срываясь с верхней точки ее3. Еще с меньшей высоты, когда шарик, не доходя до вершины петли, отрывается от нее и падает, описав в воздухе внутри петли параболу.


Движение тела по "мертвой петле


Опыт 7: Воздух горячий и воздух холодный На горлышко обыкновенной пол-литровой бутылки натяните воздушный шарик (рис. 10). Поставьте бутылку в кастрюлю с горячей водой. Воздух, находящийся внутри бутылки, начнет нагреваться. Молекулы газов, входящих в его состав, станут двигаться все быстрее и быстрее по мере повышения температуры. Они сильнее будут бомбардировать стенки бутылки и шарика. Давление воздуха внутри бутылки начнет повышаться, а шарик-раздуваться. Через некоторое время переставьте бутылку в кастрюлю с холодной водой. Воздух в бутылке начнет остывать, движение молекул замедлится, давление понизится. Шарик сморщится, будто из него выкачали воздух. Вот так можно убедиться в зависимости давления воздуха от окружающей температуры


Воздух горячий и воздух холодный


Опыт 8: Растяжение твердого тела Взяв паралоновый брусок за концы, растягиваем его. Хорошо видно увеличение расстояний между молекулами. Можно имитировать также возникновение в этом случае меж молекулярных сил притяжения.


Растяжение твердого тела


Опыт 9: Сжатие твердого тела Сжимают поролоновый брусок вдоль его большой оси. Для этого его кладут на подставку, накрывают с верху линейкой и производят давление на нее рукой. Наблюдают уменьшение расстояния между молекулами и возникновение сил отталкивания между ними.


Сжатие твердого тела


Опыт 4: Конусдвойной, катящийся вверх. Этот опыт служит для демонстрации опыта, подтверждающего, что свободно перемещающийся предмет всегда располагается таким образом, чтобы центр тяжести занимал наинизшее из возможных для него положений. Перед демонстрацией планки расставляются на определенный угол. Для этого двойной конус помещают концами в вырезы, сделанные в верхней кромке планок. Затем переносят конус вниз, в начало планок и отпускают. Конус будет передвигаться вверх, пока своими концами не попадет в вырезы. Фактически центр тяжести конуса, лежащий на его оси, будет при этом смещаются вниз, что мы и видим.

Кузнечики - вредители или полезные насекомые?

Кузнечик - членистоногое насекомое, относится к надотряду новокрылые насекомые, отряду прямокрылые, подотряду длинноусые прямокрылые, надсемейству кузнечиковые (Tettigonioidea).Русское слово “кузнечик” считается уменьшительным от слова “кузнец”. Но к куз

Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Измерительный прибор у нас дома Муниципальное казенное образовательное учреждение «Липковская средняя школа №3»Выполнила ученица 7 класса Сабитова Ксения ФИЗИКА2016-2017 учебный год Цель работы: познакомится с многообразием измерительных приборов, значение которых в жизни человека так трудно переоценить.Задачи:Выяснить, какие измерительные приборы используются в нашей семье;Познакомиться с назначением приборов и принципом их действия; Выяснить какие физические величины измеряются этими приборами;Определить цену деления и единицы измерения величин, измеряемых данными приборами.

В повседневной жизни мы сталкиваемся с разными измерительными приборами. Без них нам не обойтись. Например, чтобы высыпать определенное количество муки, нам понадобится мерный стаканчик. Или, чтобы узнать, какая температура воздуха на улице нам нужен термометр и т.д.
Дома мы тоже можем обнаружить какой-нибудь измерительный прибор. Это может быть градусник, термометр уличный, весы и т.п.
Измерительный прибор – это устройство, с помощью которого получают значение физической величины в заданном диапазоне, определяемом шкалой прибора. Медицинский термометрЭлектронные часы

Измерительные приборыЦифровые приборы Шкальные приборы

Термометр уличный- Это прибор для измерения температуры воздуха, почвы, воды и т.д.Температура воздуха, воды, измеряется в градусах Цельсия.

Определение цены деления термометраВозьмем два соседних числа на шкале термометра: Х₁= 20 ; Х₂= 30; Подсчитаем число делений между ними: N= 10;Найдем цену деления по формуле: С(д)= (Х₂ – Х₁):N С(д)=(30-20):10=1 С(д)=1⁰СОтвет: цена деления термометра 1 градус Цельсия.

Термометр (медицинский)-Это прибор для измерения температуры тела.Цена деления: ⅟₁₀ градусаТемпература тела измеряется в градусах Цельсия

Нормальная температура человека равна 36.6°С, у детей первых лет жизни допускается до 37-37.5°С. В зависимости от суточных ритмов, температура тела может колебаться в узких пределах, до 0.5-1.0°С, с максимумом около 16 часов и минимумом около 6 часов утра.

Напольные весыЭто прибор, для измерения веса тела.Цена деления: 1 кгМасса тела измеряется в килограммах.

Мерный стаканчик -Это прибор, для измерения объема жидкого или сыпучего вещества (муки, сахара, воды или молока и т. д.).Определение цены деления мерного стакана: С(д) = (200 -150) см³\1; С(д) = 50см³Объем вещества в мерном стаканчике измеряется в (см³) или (мл) 1(см ³) = 1(мл)

Вывод: Выполняя данный проект я узнала: что измерительные приборы широко используются в повседневной жизни. они необходимы для измерения различных физических величин.В этом проекте я определила шкалу термометров и весов, а так же шкалу мерного стаканчика. Измерительные приборы играют важную роль в нашей жизни.Необходимо уметь правильно ими пользоваться.


Муниципальное образовательное бюджетное учреждение «Магдагачинская средняя общеобразовательная школа №1»

Научно-исследовательская работа
«Измерительные приборы – наши помощники»

Выполнила:

ученица 7А класса

Бредихина Елена

2019 год

2 слайд

Введение

Если посмотрим вокруг, то обязательно увидим, что кроме школьных геометрических измерительных инструментов имеются строительные, геодезические, медицинские и т.д. Необходимость данных приборов очевидна. Но мы практически никогда не задумываемся, откуда и с каких времен применяют их. Какие пришли из глубины веков , а какие появились сравнительно недавно? Какие применялись в старину, а какие сейчас? Вот на эти вопросы я попытаюсь ответить в данной исследовательской работе.

3 слайд


  1. История измерительных приборов на Руси.
В древнерусской числовой системе архитектурного пропорционирования, которая функционировала задолго до монгольского нашествия, в качестве единиц измерения использовался некоторый набор инструментов под общим названием "сажени". Причем саженей было несколько, разной длины и, что особенно необычно, они были несоразмерны друг другу и использовались при замере объектов одновременно.

4 слайд


2. Старинные меры измерения.

С древности, мерой длины и веса всегда был человек: на сколько он протянет руку, сколько сможет поднять на плечи и т.д. Система древнерусских мер длины включала в себя следующие основные меры : версту, сажень, аршин, локоть, пядь и вершок.


  1. слайд
3.Виды измерительных инструментов

Какие инструменты применяются в работе? некоторые из них можно перечислить.

Транспортир - используют для измерения градусных мер углов.

Циркуль - применяют для построения окружности и измерения длины и радиуса окружности.

Линейка - служит для построения геометрических фигур измерения

длины их элементов.

Термометры - для измерения температуры.

Шагомеры - для измерения длины шага и затем нахождения расстояния.

Весы - для измерения массы разных тел.

градусных мер углов

ое6 слайд

4.Лазерные приборы

Современные технологии уже сделали более эффективными ручной инструмент – долото заменил перфоратор, электрическая дрель пришла на смену механике, в теодолитах и нивелирах появились электронно – вычислительные модули, так и обычная строительная бечевка, угольники и отвесы, постепенно уступают место лазерным приборам.

Заключение.

Вр сде7 слайд

5.Оптические приборы

Оптические приборы - это устройства, в которых излучение какой-либо области спектра преобразуется. Они могут увеличивать, уменьшать, улучшать (в редких случаях ухудшать) качество изображения, давать возможность увидеть искомый предмет косвенно.

Заключение:

Время не стоит на месте. На смену старых технологий приходят новые, более усовершенствованные. Если рассматривать этапы развития человечества, то можно увидеть разницу между первобытным человеком и современным. Насколько их внешний вид отличается друг от друга. Так можно и сказать об измерительных инструментах. Шагая, в ногу со своим временем одни приборы меняют другие приборы, более усовершенствованные. Какие то остаются в истории, а какие -то продолжают использоваться в современном мире .

Спасибо за внимание!

 


Читайте:



» «Наша Масленица, ты широкая, в детский сад к нам пришла и весну принесла!

» «Наша Масленица, ты широкая, в детский сад к нам пришла и весну принесла!

Оксана Перерва Сценарий развлечения «Масленица» в старшей группе Цель : продолжать знакомить детей с народными праздниками, создать бодрое...

Значение слова стрешневы в краткой биографической энциклопедии

Значение слова стрешневы в краткой биографической энциклопедии

СТРЕШНЕВ МАКСИМ ФЕДОРОВИЧ. Ум. в 1657. Был несколько лет воеводой в Верхотурье. В 1629 приобрел у Поместного приказа находившиеся к югу от Москвы...

Мужчина-крыса - женщина-тигр

Мужчина-крыса - женщина-тигр

В этой теме: Характер рожденных в Год Тигра Это сильные личности, бунтари или руководители. Их трудно заставить подчиняться, зато руководят они...

Договор банковского вклада для физических лиц

Договор банковского вклада для физических лиц

Договор депозитного вклада (для физических лиц) гор.__________________ " "_________________20___г. Коммерческий банк "_______" (условно),...

feed-image RSS