Главная - Дома
Линейная функция, ее свойства и график. Линейная функция На рисунке изображены графики линейных функций вида

Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел. Здесь k – угловой коэффициент (действительное число), b свободный член (действительное число), x – независимая переменная.

В частном случае, если k = 0 , получим постоянную функцию y = b , график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b) .

Если b = 0 , то получим функцию y = kx , которая является прямой пропорциональностью.

b длина отрезка , который отсекает прямая по оси Oy, считая от начала координат.

Геометрический смысл коэффициента k угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0 , то область значений линейной функции есть вся вещественная ось. Если k = 0 , то область значений линейной функции состоит из числа b ;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b .

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

5) Точки пересечения с осями координат:

Ox: y = kx + b = 0, x = -b/k , следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

Oy: y = 0k + b = b , следовательно (0; b) – точка пересечения с осью ординат.

Замечание.Если b = 0 и k = 0 , то функция y = 0 обращается в ноль при любом значении переменной х . Если b ≠ 0 и k = 0 , то функция y = b не обращается в ноль ни при каких значениях переменной х .

6) Промежутки знакопостоянства зависят от коэффициента k.

a) k > 0; kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x из (-b/k; +∞) ,

y = kx + b – отрицательна при x из (-∞; -b/k) .

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x из (-∞; -b/k) ,

y = kx + b – отрицательна при x из (-b/k; +∞) .

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) Промежутки монотонности линейной функции зависят от коэффициента k .

k > 0 , следовательно y = kx + b возрастает на всей области определения,

k < 0 , следовательно y = kx + b убывает на всей области определения.

8) Графиком линейной функции является прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b . Ниже приведена таблица, которая наглядно это иллюстрирует.

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.

Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
Графиком линейной функции является прямая.

1. Чтобы постороить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

Например, чтобы построить график функции y= ⅓ x+2, удобно взять x=0 и x=3, тогда ординаты эти точек будут равны y=2 и y=3. Получим точки А(0;2) и В(3;3). Соединим их и получим график функции y= ⅓ x+2:

2. В формуле y=kx+b число k называется коэффицентом пропорциональности:
если k>0, то функция y=kx+b возрастает
если k
Коэффициент b показывает смещение графика функции вдоль оси OY:
если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
если b
На рисунке ниже изображены графики функций y=2x+3; y= ½ x+3; y=x+3

Заметим, что во всех этих функциях коэффициент k больше нуля, и функции являются возрастающими. Причем, чем больше значение k, тем больше угол наклона прямой к положительному направлению оси OX.

Во всех функциях b=3 – и мы видим, что все графики пересекают ось OY в точке (0;3)

Теперь рассмотрим графики функций y=-2x+3; y=- ½ x+3; y=-x+3

На этот раз во всех функциях коэффициент k меньше нуля, и функции убывают. Коэффициент b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

Рассмотрим графики функций y=2x+3; y=2x; y=2x-3

Теперь во всех уравнениях функций коэффициенты k равны 2. И мы получили три параллельные прямые.

Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
График функции y=2x+3 (b=3) пересекает ось OY в точке (0;3)
График функции y=2x (b=0) пересекает ось OY в точке (0;0) - начале координат.
График функции y=2x-3 (b=-3) пересекает ось OY в точке (0;-3)

Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.
Если k 0

Если k>0 и b>0 , то график функции y=kx+b имеет вид:

Если k>0 и b , то график функции y=kx+b имеет вид:

Если k, то график функции y=kx+b имеет вид:

Если k=0 , то функция y=kx+b превращается в функцию y=b и ее график имеет вид:

Ординаты всех точек графика функции y=b равны b Если b=0 , то график функции y=kx (прямая пропорциональность) проходит через начало координат:

3. Отдельно отметим график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.

Например, график уравнения x=3 выглядит так:
Внимание! Уравнение x=a не является функцией, так одному значению аргумента соотвутствуют разные значения функции, что не соответствует определению функции.


4. Условие параллельности двух прямых:

График функции y=k 1 x+b 1 параллелен графику функции y=k 2 x+b 2 , если k 1 =k 2

5. Условие перепендикулярности двух прямых:

График функции y=k 1 x+b 1 перепендикулярен графику функции y=k 2 x+b 2 , если k 1 *k 2 =-1 или k 1 =-1/k 2

6. Точки пересечения графика функции y=kx+b с осями координат.

С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):

«Рисунки для слайдов» - Факультативный курс «Мир мультимедиа технологий». Рисунки на слайдах. В) можно перенести рисунок захватив мышкой за середину. Вставка рисунков на слайд. Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 5. 95% информации воспринимается человеком с помощью органов зрения …

«Функции и их графики» - 3.Функция тангенс. Тригонометрические. Функция определена и непрерывна на всем множестве действительных чисел. Определение: Числовая функция, заданная формулой y = cos x, называется косинусом. 4.Функция котангенс. В самой точке x = a функция может существовать, а может и не существовать. Определение 1. Пусть функция y = f(x) определена на отрезке.

«Функции нескольких переменных» - Наибольшее и наименьшее значения функции. Теорема Вейерштрасса. Внутренние и граничные точки. Предел функции 2-х переменных. График функции. Теорема. Непрерывность. Ограниченная область. Открытая и замкнутая области. Производные высших порядков. Частные производные. Частные приращения функции 2-х переменных.

«3d рисунки на асфальте» - Свои первые работы курт стал создавать в 16 лет в Санта-Барбаре, где и пристрастился к уличному искусству. 3d рисунки на асфальте. Курт Веннер – один из самых известных уличных художников, который рисует 3D рисунки на асфальте при помощи обычных мелков. США. В молодости Курт Веннер работал художником-иллюстратором в NASA, где создавал первоначальные изображения будущих космических кораблей.

«Тема Функция» - Если ученики работают по-разному, то и учитель должен с ними работать по-разному. Нужно выяснить не то, что ученик не знает, а то, что он знает. Обобщение. Синтез. Результаты ЕГЭ по математике. Программа факультативного курса. Ассоциация. Учебно-тематический план (24 часа). Аналогия. Если ученик превзошел учителя – вот это и есть учительское счастье.

Линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. Здесь k - угловой коэффициент (действительное число), b - свободный член (действительное число), x - независимая переменная.

В частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b).

Если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

Геометрический смысл коэффициента b - длина отрезка, который отсекает прямая по оси Oy, считая от начала координат.

Геометрический смысл коэффициента k - угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

Свойства линейной функции:

1) Область определения линейной функции есть вся вещественная ось;

2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось. Если k = 0, то область значений линейной функции состоит из числа b;

3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b - четная;

b) b = 0, k ≠ 0, следовательно y = kx - нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b - функция общего вида;

d) b = 0, k = 0, следовательно y = 0 - как четная, так и нечетная функция.

4) Свойством периодичности линейная функция не обладает;

Ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) - точка пересечения с осью абсцисс.

Oy: y = 0k + b = b, следовательно (0; b) - точка пересечения с осью ординат.

Замечание.Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. Если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) Промежутки знакопостоянства зависят от коэффициента k.

a) k > 0; kx + b > 0, kx > -b, x > -b/k.

y = kx + b - положительна при x из (-b/k; +∞),

y = kx + b - отрицательна при x из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b - положительна при x из (-∞; -b/k),

y = kx + b - отрицательна при x из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) Промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

8) Графиком линейной функции является прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b. Ниже приведена таблица, которая наглядно это иллюстрирует рисунок 1. (Рис.1)

Пример.Рассмотрим следующую линейную функцию: y = 5x - 3.

3) Функция общего вида;

4) Непериодическая;

5) Точки пересечения с осями координат:

Ox: 5x - 3 = 0, x = 3/5, следовательно (3/5; 0) - точка пересечения с осью абсцисс.

Oy: y = -3, следовательно (0; -3) - точка пересечения с осью ординат;

6) y = 5x - 3 - положительна при x из (3/5; +∞),

y = 5x - 3 - отрицательна при x из (-∞; 3/5);

7) y = 5x - 3 возрастает на всей области определения;

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

 


Читайте:



» «Наша Масленица, ты широкая, в детский сад к нам пришла и весну принесла!

» «Наша Масленица, ты широкая, в детский сад к нам пришла и весну принесла!

Оксана Перерва Сценарий развлечения «Масленица» в старшей группе Цель : продолжать знакомить детей с народными праздниками, создать бодрое...

Значение слова стрешневы в краткой биографической энциклопедии

Значение слова стрешневы в краткой биографической энциклопедии

СТРЕШНЕВ МАКСИМ ФЕДОРОВИЧ. Ум. в 1657. Был несколько лет воеводой в Верхотурье. В 1629 приобрел у Поместного приказа находившиеся к югу от Москвы...

Мужчина-крыса - женщина-тигр

Мужчина-крыса - женщина-тигр

В этой теме: Характер рожденных в Год Тигра Это сильные личности, бунтари или руководители. Их трудно заставить подчиняться, зато руководят они...

Договор банковского вклада для физических лиц

Договор банковского вклада для физических лиц

Договор депозитного вклада (для физических лиц) гор.__________________ " "_________________20___г. Коммерческий банк "_______" (условно),...

feed-image RSS