Главная - Обустройство гаража
Схемы простых регуляторов для паяльника. Как сделать регулятор температуры паяльника своими руками Схема регулятора для паяльника со шкалой температуры

Перед монтажом собранный регулятор можно проверить мультиметром. Проверять нужно только с подключённым паяльником , то есть под нагрузкой. Вращаем ручку резистора - напряжение плавно изменяется.

В регуляторах, собранных по некоторым из приведённых здесь схем, уже будут стоять световые индикаторы. По ним можно определить, работает ли устройство. Для остальных самая простая проверка - подключить к регулятору мощности лампочку накаливания. Изменение яркости наглядно отразит уровень подаваемого напряжения.

Регуляторы, где светодиод находится в цепи последовательно с резистором (как на схеме с маломощным тиристором), можно наладить. Если индикатор не горит, нужно подобрать номинал резистора - взять с меньшим сопротивлением, пока яркость не будет приемлемой. Слишком большой яркости добиваться нельзя - сгорит индикатор.

Как правило, регулировка при правильно собранной схеме не требуется. При мощности обычного паяльника (до 100 Вт, средняя мощность - 40 Вт) ни один из регуляторов, собранных по вышеприведённым схемам, не требует дополнительного охлаждения. Если паяльник очень мощный (от 100 Вт), то тиристор или симистор нужно установить на радиатор во избежание перегрева.

Регулятор мощности для паяльника можно собрать своими руками, ориентируясь на собственные возможности и потребности. Существует немало вариантов схем регулятора с различными ограничителями мощности и разными средствами управления. Здесь приведены некоторые, самые простые из них. А небольшой обзор корпусов, в которые можно смонтировать детали, поможет выбрать формат устройства.

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя . Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, ниже приведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы опасно для жизни!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление межу анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение межу его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.


Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.


Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания . Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.


Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служить для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.


Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.


Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.


Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорным регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Для многих опытных радиолюбителей изготовление регулятора мощности для паяльника своими руками вполне обычное дело. Для начинающих из-за отсутствия опыта такие конструкции представляют определенную сложность. Основная проблема — подключение к сети питания 220 В. При наличии ошибок в схеме или монтаже может возникнуть довольно неприятный эффект, сопровождаемый громким звуком и отключением напряжения. Поэтому при отсутствии опыта желательно вначале приобрести простейшее устройство для регулировки мощности, а после его эксплуатации и изучения на основе приобретенного опыта изготовить свое, более совершенное.

Электрический паяльник, это ручной инструмент предназначенный для расплавления припоя и разогрева до нужной температуры соединяемых деталей.

Для предотвращения аварийных ситуаций следует на рабочем месте установить автоматический выключатель с небольшим максимально допустимым током и одной или двумя розетками. Розетки нужно использовать для первичного подключения изготовленных устройств. Такая мера безопасности позволит избежать общего отключения и походов к щитку, а также язвительных комментариев от членов семейства.

Ступенчатый регулятор мощности

Для изготовления регулирующего устройства нужно подобрать:

  • трансформатор на 220 В с мощностью, превышающей мощность паяльника на 20-25% (напряжение на вторичной обмотке должно быть не менее 200 В);
  • переключатель на 3-4 положения, можно больше. Максимально допустимый ток контактов должен соответствовать потребляемому току паяльника;
  • корпус необходимого размера;
  • шнур с вилкой;
  • розетку.

Также понадобятся крепежные элементы, шурупы, винты с гайками. Вторичную обмотку следует перемотать, установив выводы на напряжение от 150 до 220 В. Количество выводов будет зависеть от типа переключателя, напряжение на выводах желательно распределить равномерно. В цепь питания можно установить выключатель и индикатор напряжения для отображения состояния вкл/выкл.

Устройство работает следующим образом. При наличии питания на первичной обмотке на вторичной образуется напряжение соответствующей величины. В зависимости от положения переключателя S1 на паяльник будет поступать напряжение от 150 до 220 В. Меняя положение переключателя, можно изменять температуру нагрева. При наличии деталей изготовить такое устройство по силам даже новичку.

Регулятор с плавной регулировкой мощности

Эта схема позволяет собрать компактный регулятор небольших размеров с плавной регулировкой потребляемой мощности. Устройство можно смонтировать в розетке или корпусе зарядного устройства от мобильного телефона. Устройство может работать с нагрузкой до 500 Вт. Для изготовления понадобятся:

  • тиристор КУ208Г или его аналоги;
  • диод КР1125КП2, возможна замена на аналогичные диоды;
  • конденсатор емкостью 0,1 мкФ с напряжением не менее 160 В;
  • резистор 10 кОм;
  • переменный резистор 470 кОм.

Устройство довольно простое, при отсутствии ошибок сборки начинает работать сразу, без дополнительной наладки. В цепь питания желательно включить индикатор наличия напряжения и плавкий предохранитель. Потребляемая мощность паяльника регулируется переменным резистором. В качестве регулятора температуры нагрева паяльника можно использовать трансформатор необходимой мощности. Оптимальным вариантом является использование устройства с названием «ЛАТР», но такие приборы давно сняты с производства. К тому же они имеют значительный вес и габариты, использовать их можно только стационарно.

Регулятор с контролем температуры

Устройство представляет собой терморегулятор, отключающий нагрузку при достижении заданного параметра. Измерительный элемент следует закрепить на жале паяльника. Для подключения нужно использовать провод в термостойкой изоляции, вывести их на общий разъем для подключения паяльника. Можно использовать отдельные соединения, но это неудобно.

Контроль температуры осуществляется терморезистором КМТ-4 или другим с аналогичными параметрами. Принцип работы довольно прост. Термосопротивление и регулирующий резистор представляют собой делитель напряжения. Переменное сопротивление устанавливает определенный потенциал в средней точке делителя. Терморезистор при нагревании изменяет свое сопротивление и, соответственно, изменяет установленное напряжение. В зависимости от уровня сигнала микросхема выдает управляющий сигнал на транзистор.

Питание низковольтной схемы реализовано через ограничивающий резистор и поддерживается на необходимом уровнем стабилитроном и сглаживающим электролитическим конденсатором. Транзистор током эмиттера открывает или закрывает тиристор. Паяльник подключается последовательно с тиристором.

Максимально допустимая мощность паяльника — не более 200 Вт. При необходимости использовать более мощный паяльник, нужно использовать диоды с большим максимально допустимым током для выпрямительного моста, вместо тиристора — тринистор. Все силовые элементы схемы нужно установить на отводящие тепло радиаторы из алюминия или меди. Необходимый размер при мощности в 2 кВт для диодов выпрямительного моста не менее 70 см 2 , для тринистора 300 см 2 .

Регулятор для паяльника на симисторе

Наиболее оптимальной схемой для регулировки мощности паяльника является симисторный регулятор. Паяльник включается последовательно с симистором. Все элементы управления работают на падении напряжения силового регулирующего элемента. Схема довольно проста и может быть выполнена радиолюбителями с небольшим опытом работы. Номинал регулирующего резистора можно менять в зависимости от требуемого диапазона на выходе регулятора. При значении в 100 кОм можно изменять напряжение от 160 до 220 В, при 220 кОм — от 90 до 220 В. При максимальном режиме работы регулятора напряжение на паяльнике отличается от сетевого на 2-3 В, что отличает его в лучшую сторону от устройств с тиристорами. Изменение напряжения плавное, можно установить любое значение. Светодиод в схеме предназначен для стабилизации работы, а не в качестве индикатора. Заменять или исключать его из схемы не рекомендуется. Устройство начинает работать нестабильно. При необходимости можно установить дополнительный светодиод в качестве индикатора наличия напряжения с соответствующими ограничительными элементами.

Для монтажа можно использовать обычную установочную коробку. Монтаж можно сделать навесным способом или изготовить плату. Для подключения паяльника желательно установить на выходе регулятора розетку.

При установке выключателя во входной цепи нужно использовать устройство с двумя парами контактов, которое будет отключать оба провода. Изготовление устройства не требует значительных материальных затрат, довольно просто может быть выполнено начинающими радиолюбителями. Наладка при работе заключается в подборе оптимального диапазона напряжения для работы паяльника. Выполняется подбором номинала переменного резистора.

Простейшая схема регулятора

Самый простой регулятор температуры для паяльника можно собрать из диода с максимальным прямым током соответственно мощности паяльника и выключателя. Схема собирается очень просто — диод подключается параллельно контактам выключателя. Принцип работы: при разомкнутых контактах на паяльник поступают только полупериоды одной полярности, напряжение будет равно 110 В. Паяльник будет иметь низкую температуру. При замыкании контактов на паяльник поступит полное напряжение сети номиналом 220 В. Паяльник за несколько секунд прогреется до максимальной температуры. Такая схема позволит предохранить жало инструмента от перегрева и окисления, поможет значительно снизить расход электроэнергии.

Конструктивное исполнение может быть любым. Можно использовать ручной выключатель или установить выключатель с системой рычагов на подставке. При опускании инструмента на подставку выключатель должен разомкнуть контакты, при поднятии замкнуть.

Поскольку процесс пайки связан с расплавлением припоя, необходимо всегда выдерживать оптимальную температуру нагрева. Учитываются следующие факторы:

  • Температура плавления припоя (от 150 до 320 градусов);
  • Термостойкость элементов, на которых производится пайка. Многие радиокомпоненты просто выходят из строя при продолжительном нагреве, а изоляция проводов теряет свои свойства;
  • Площадь рассеивания контактов. При соединении массивных элементов, необходимо иметь запас по температуре и мощности.

Если вы просто спаиваете провода, достаточно знать мощность паяльника и примерную температуру плавления припоя. Критерий простой – быстрый или медленный нагрев.

А вот при монтаже печатных плат или ремонте электроприборов – неверно выбранная температура паяльника может вылиться в приобретение дорогостоящих радиодеталей, которые будут повреждены высокой температурой.

Температура паяльника для пайки – как подобрать

  1. Если монтаж не связан со специфическими радиодеталями, чувствительными к перегреву – степень нагрева жала должна на 10 градусов превышать температуру плавления припоя. Причем не точку начала расплава – а именно температуру устойчивого нахождения в жидком состоянии;
  2. Если планируется соединять контакты с большой площадью и массой – повышается не величина нагрева, а мощность паяльника. Маломощный прибор с высокой температурой все равно не справится с рассеиванием. Компенсируют массу детали соответствующим размером рабочего жала. А для его разогрева требуется мощность, а не градусы;
  3. В паспорте радиокомпонентов обычно указывается максимально допустимое значение нагрева корпуса. Это относится и к температуре пайки. Опять же, сделайте выбор в пользу мощности, а не повышения градуса. Надо стараться, чтобы время контакта жала и детали было минимальным. Припой должен расплавиться, а корпус оставаться не перегретым.

Для различных условий работы выпускаются паяльники электрические с регулировкой температуры.

Не имеет значения конструктивное исполнение, регулятор может быть встроенным в корпус или выполнен в виде отдельного блока. Главное – вы знаете, насколько горячее жало у инструмента.

Работа многих связана с применением паяльника. Для кого-то это просто хобби. Паяльники бывают разные. Могут быть простые, но надежные, могут представлять собой современные паяльные станции, в том числе инфракрасные. Для получения качественной пайки требуется иметь паяльник нужной мощности и нагревать его до определенной температуры.

Рисунок 1. Схема регулятора температуры, собранная на тиристоре КУ 101Б.

Для помощи в этом деле предназначены различные регуляторы температуры для паяльника. Они продаются в магазинах, но умелые руки могут самостоятельно собрать подобное устройство с учетом своих требований.

Достоинства регуляторов температуры

Большинство из домашних мастеров с юных лет пользуется паяльником мощностью в 40 Вт. Раньше трудно было что-то купить с другими параметрами. Паяльник сам по себе удобный, с его помощью можно паять многие предметы. Но пользоваться им при монтаже радиоэлектронных схем неудобно. Тут и пригодится помощь регулятора температуры для паяльника:

Рисунок 2. Схема простейшего регулятора температуры.

  • жало паяльника прогревается до оптимальной температуры;
  • продлевается срок службы жала;
  • радиодетали никогда не перегреются;
  • не произойдет отслоения токоведущих элементов на печатной плате;
  • при вынужденном перерыве в работе паяльник не нужно выключать из сети.

Не в меру нагретый паяльник не держит на жале припой, с перегретого паяльника он капает, делая место пайки очень непрочным. Жало покрывается слоем окалины, которую счищают только шкуркой и напильниками. В результате появляются кратеры, которые тоже нужно удалять, сокращая длину жала. Если использовать регулятор температуры, такого не произойдет, жало всегда будет готово к работе. При перерыве в работе достаточно уменьшить его нагрев, не выключая из сети. После перерыва горячий инструмент быстро наберет нужную температуру.

Вернуться к оглавлению

Простые схемы регулятора температуры

В качестве регулятора можно использовать ЛАТР (лабораторный трансформатор), регулятор освещенности для настольной лампы, блок питания КЭФ-8, современную паяльную станцию.

Рисунок 3. Схема выключателя для регулятора.

Современные паяльные станции способны регулировать температуру жала паяльника в разных режимах — в ручном, в полностью автоматическом. Но для домашнего мастера стоимость их довольно значительна. Из практики видно, что автоматическая регулировка практически не нужна, так как напряжение в сети обычно стабильное, температура в помещении, где ведется пайка, тоже не меняется. Поэтому для сборки может использоваться простая схема регулятора температуры, собранная на тиристоре КУ 101Б (рис.1). Этот регулятор с успехом используется для работы с паяльниками и лампами мощностью до 60 Вт.

Этот регулятор очень прост, но позволяет менять напряжение в пределах 150-210 В. Продолжительность нахождения тиристора в открытом состоянии зависит от положения переменного резистора R3. Этим резистором и осуществляется регулировка напряжения на выходе прибора. Пределы регулировки устанавливаются резисторами R1 и R4. С помощью подбора R1 устанавливается минимальное напряжение, R4 — максимальное. Диод Д226Б можно заменить на любой с обратным напряжением более 300 В. Тиристор подойдет КУ101Г, КУ101Е. Для паяльника мощностью свыше 30 Вт диод нужно брать Д245А, тиристор КУ201Д-КУ201Л. Плата после сборки может выглядеть примерно так, как показано на рис. 2.

Для индикации работы прибора можно регулятор оснастить светодиодом, который будет светиться при наличии напряжения на его входе. Не будет лишним и отдельный выключатель (рис. 3).

Рисунок 4. Схема регулятора температуры с симистором.

Следующая схема регулятора зарекомендовала себя с хорошей стороны (рис. 4). Изделие получается очень надежным и простым. Деталей требуется минимум. Главная из них — симистор КУ208Г. Из светодиодов достаточно оставить HL1, который будет сигнализировать о наличии напряжения на входе и о работе регулятора. Корпусом для собранной схемы может быть подходящих размеров коробочка. Можно для этой цели использовать корпус электрической розетки или выключателя с установленным проводом питания и вилкой. Ось переменного резистора нужно вывести наружу и надеть на нее пластмассовую ручку. Рядом можно нанести деления. Такой простейший прибор способен регулировать нагрев паяльника в пределах примерно 50-100%. При этом мощность нагрузки рекомендуется в пределах 50 Вт. На практике схема работала с нагрузкой 100 Вт без последствий в течение часа.

Для пайки радиосхем и других деталей нужны разные инструменты. Главный из них — паяльник. Для более красивой и качественной пайки его рекомендуется оснастить регулятором температуры. Вместо него можно использовать разные приборы, которые продаются в магазинах.

Можно своими руками без проблем собрать приспособление из нескольких деталей.

Это обойдется очень дешево, да интерес представляет больший.


Моделей паяльников в магазинах множество - от дешёвых китайских до дорогих, со встроенным регулятором температуры, продаются даже паяльные станции.

Другое дело, нужна ли та же станция, если подобные работы нужно выполнять раз в год, а то и реже? Проще купить недорогой паяльник. А у кого-то дома сохранились простые, но надёжные советские инструменты. Паяльник, не оснащённый дополнительным функционалом, греет на полную, пока вилка в сети. А отключённый, быстро остывает. Перегретый паяльник способен испортить работу: им становится невозможно прочно припаять что-либо, флюс быстро испаряется, жало окисляется и припой скатывается с него. Недостаточно нагретый инструмент и вовсе может испортить детали - из-за того что припой плохо плавится, паяльник можно передержать впритык к деталям.

Чтобы сделать работу комфортнее, можно собрать своими руками регулятор мощности, который ограничит напряжение и тем самым не даст жалу паяльника перегреваться.

Регуляторы для паяльника своими руками. Обзор способов монтажа

В зависимости от вида и набора радиодеталей, регуляторы мощности для паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное, с цифровым индикатором и программным управлением.

Возможные виды монтажа в корпус: вилка, розетка, станция

В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный - вилка. Для этого можно использовать зарядное устройство для сотового телефона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса. Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём.

Другой вид корпуса для несложных регуляторов - розетка. Она может быть как одинарной, так и представлять собой тройник-удлинитель. В последнем можно очень удобно поставить ручку со шкалой.

Вариантов монтажа регулятора с индикатором напряжения тоже может быть несколько. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант - удлинитель с вмонтированным туда индикатором, так и оригинальные решения.

Собрать можно даже подобие паяльной станции, установить на ней подставку для паяльника (её можно купить отдельно). При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать - например, термоусадочной трубкой.

Варианты схем в зависимости от ограничителя мощности

Регулятор мощности можно собрать по разным схемам. В основном различия состоят в полупроводниковой детали, приборе, который будет регулировать подачу тока. Это может быть тиристор или симистор. Для более точного управления работой тиристора или симистора в схему можно добавить микроконтроллер.

Можно сделать простейший регулятор с диодом и выключателем - для того чтобы оставить паяльник в рабочем состоянии на какое-то (возможно, длительное) время, не давая ему ни остывать, ни перегреваться. Остальные регуляторы дают возможность задать температуру жала паяльника более плавно - под различные нужды. Сборка устройства по любой из схем производится схожим способом. В фотографиях и видеороликах приведены примеры того, как можно собрать регулятор мощности для паяльника своими руками. На их основе можно сделать прибор с нужными лично вам вариациями и по собственной схеме.

Тиристор - своеобразный электронный ключ. Пропускает ток только в одном направлении. В отличие от диода у тиристора 3 выхода - управляющий электрод, анод и катод. Открывается тиристор посредством подачи импульса на электрод. Закрывается при смене направления или прекращении подачи проходящего через него тока.

Или триак - вид тиристора, только в отличие от этого прибора, двусторонний, проводит ток в обоих направлениях. Представляет собой, по сути, два тиристора, соединённые вместе.

Симистор, или триак. Основные части, принцип действия и способ отображения на схемах. А1 и А2 - силовые электроды, G - управляющий затвор

В схему регулятора мощности для паяльника - зависимости от его возможностей - включают следующие редиодетали.

Резистор - служит для преобразования напряжения в силу тока и обратно. Конденсатор - основная роль этого прибора в том, что он перестаёт проводить ток, как только разряжается. И начинает проводить вновь - по мере того как заряд достигает нужной величины. В схемах регуляторов конденсатор служит для того, чтобы выключить тиристор. Диод - полупроводник, элемент, который пропускает ток в прямом направлении и не пропускает в обратном. Подвид диода - стабилитрон - используется в устройствах для стабилизации напряжения. Микроконтроллер - микросхема, при помощи которой обеспечивается электронное управление устройством. Бывает разной степени сложности.

Схема с выключателем и диодом

Такой тип регулятора самый простой в сборке, с наименьшим количеством деталей. Его можно собирать без платы, на весу. Выключатель (кнопка) замыкает цепь - на паяльник подаётся всё напряжение, размыкает - напряжение падает, температура жала тоже. Паяльник при этом остаётся нагретым - такой способ хорош для режима ожидания. Подойдёт выпрямительный диод, рассчитанный на ток от 1 Ампера.

Сборка двухступенчатого регулятора на весу

  1. Подготовить детали и инструменты: диод (1N4007), выключатель с кнопкой, кабель с вилкой (это может быть кабель паяльника или же удлинителя - если есть страх испортить паяльник), провода, флюс, припой, паяльник, нож.
  2. Зачистить, а потом залудить провода.
  3. Залудить диод. Припаять провода к диоду. Удалить лишние концы диода. Надеть термоусадочные трубки, обработать нагревом. Можно также использовать электроизоляционную трубку - кембрик. Подготовить кабель с вилкой в том месте, где удобнее будет крепить выключатель. Разрезать изоляцию, перерезать один из находящихся внутри проводов. Часть изоляции и второй провод оставить целыми. Зачистить концы разрезанного провода.
  4. Расположить диод внутри выключателя: минус диода - к вилке, плюс - к выключателю.
  5. Скрутить концы разрезанного провода и проводов, подсоединённых к диоду. Диод должен находиться внутри разрыва. Провода можно спаять. Подключить к клеммам, затянуть винты. Собрать выключатель.

Регулятор с выключателем и диодом - пошагово и наглядно

Регулятор на тиристоре

Регулятор с ограничителем мощности - тиристором - позволяет плавно устанавливать температуру паяльника от 50 до 100%. Для того чтобы расширить эту шкалу (от нуля до 100%), в схему нужно добавить диодный мост. Сборка регуляторов и на тиристоре, и на симисторе совершает сходным образом. Метод можно применить для любого устройства такого типа.

Сборка тиристорного (симисторного) регулятора на печатной плате

  1. Сделать монтажную схему - наметить удобное расположение всех деталей на плате. Если плата приобретается - монтажная схема идёт в комплекте.
  2. Подготовить детали и инструменты: печатную плату (её нужно сделать заранее согласно схеме или купить), радиодетали - см. спецификацию к схеме, кусачки, нож, провода, флюс, припой, паяльник.
  3. Разместить на плате детали согласно монтажной схеме.
  4. Откусить кусачками лишние концы деталей.
  5. Смазать флюсом и припаять каждую деталь - сначала резисторы с конденсаторами, потом - диоды, транзисторы, тиристор (симистор), динистор.
  6. Подготовить корпус для сборки.
  7. Зачистить, залудить провода, припаять к плате согласно монтажной схеме, установить плату в корпус. Заизолировать места соединения проводов.
  8. Проверить регулятор - подключить к лампе накаливания.
  9. Собрать устройство.

Схема с маломощным тиристором

Тиристор небольшой мощности недорогой, занимает мало места. Его особенность - в повышенной чувствительности. Для управления им используются переменный резистор и конденсатор. Подходит для устройств мощностью не более 40 Вт.

Спецификация

Схема с мощным тиристором

Управление тиристором осуществляется за счёт двух транзисторов. Уровень мощности регулирует резистор R2. Регулятор, собранный по такой схеме, рассчитан на нагрузку до 100 Вт.

Спецификация

Название Обозначение Вид/Номинал
Конденсатор C1 0,1 мкФ
Транзистор VT1 КТ315Б
Транзистор VT2 КТ361Б
Резистор R1 3,3 кОм
Резистор переменный R2 100 кОм
Резистор R3 2,2 кОм
Резистор R4 2,2 кОм
Резистор R5 30 кОм
Резистор R6 100 кОм
Тиристор VS1 КУ202Н
Стабилитрон VD1 Д814В
Диод выпрямительный VD2 1N4004 или КД105В

Сборка тиристорного регулятора по приведённой схеме в корпус - наглядно

Сборка и проверка тиристорного регулятора (обзор деталей, особенности монтажа)

Схема с тиристором и диодным мостом

Такое устройство даёт возможность регулировки мощности от нуля до 100%. В схеме использован минимум деталей.

Спецификация

Регулятор на симисторе

Схема регулятора на симисторе с небольшим количеством радиодеталей. Позволяет регулировать мощность от нуля до 100%. Конденсатор и резистор обеспечат чёткую работу симистора - он будет открываться даже при низкой мощности.

Сборка симисторного регулятора по приведённой схеме пошагово

Регулятор на симисторе с диодным мостом

Схема такого регулятора не очень сложная. При этом варьировать мощность нагрузки можно в довольно большом диапазоне. При мощности более 60 Вт лучше посадить симистор на радиатор. При меньшей мощности охлаждение не нужно. Метод сборки такой же, как и в случае с обычным симисторным регулятором.

Резистор R3 1 кОм
Резистор R4 1 кОм
Резистор R5 100 Ом
Резистор R6 47 Ом
Резистор R7 1 МОм
Резистор R8 430 кОм
Резистор R9 75 Ом
VS1 BT136–600E
Стабилитрон VD2 1N4733A (5.1v)
Диод VD1 1N4007
Микроконтроллер DD1 PIC 16F628
Индикатор HG1 АЛС333Б
 


Читайте:



» «Наша Масленица, ты широкая, в детский сад к нам пришла и весну принесла!

» «Наша Масленица, ты широкая, в детский сад к нам пришла и весну принесла!

Оксана Перерва Сценарий развлечения «Масленица» в старшей группе Цель : продолжать знакомить детей с народными праздниками, создать бодрое...

Значение слова стрешневы в краткой биографической энциклопедии

Значение слова стрешневы в краткой биографической энциклопедии

СТРЕШНЕВ МАКСИМ ФЕДОРОВИЧ. Ум. в 1657. Был несколько лет воеводой в Верхотурье. В 1629 приобрел у Поместного приказа находившиеся к югу от Москвы...

Мужчина-крыса - женщина-тигр

Мужчина-крыса - женщина-тигр

В этой теме: Характер рожденных в Год Тигра Это сильные личности, бунтари или руководители. Их трудно заставить подчиняться, зато руководят они...

Договор банковского вклада для физических лиц

Договор банковского вклада для физических лиц

Договор депозитного вклада (для физических лиц) гор.__________________ " "_________________20___г. Коммерческий банк "_______" (условно),...

feed-image RSS