Главная - Обустройство гаража
Источник тока - классификация и назначение. Источник тока - классификация и назначение Какие бывают источники тока

Электрический ток - направленное, упорядоченное движение электрических зарядов.

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.

Обрати внимание!

Условия существования электрического тока:

Наличие свободных электрических зарядов;
наличие электрического поля, которое обеспечивает движение зарядов;
замкнутая электрическая цепь.

Электрическое поле создают источники электрического тока.

Источник тока - это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

Механический источник тока - механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

Тепловой источник тока - внутренняя энергия преобразуется в электрическую энергию.

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

Световой источник тока - энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

Химический источник тока - в результате химических реакций внутренняя энергия преобразуется в электрическую.
К нему относится, например, гальванический элемент.

В цинковый сосуд Ц вставлен угольный стержень У, у которого имеется металлическая крышка М. Стержень помещён в полотняный мешочек, наполненный смесью оксида марганца с углём С. Пространство между цинковым корпусом и смесью оксида марганца с углём заполнено желеобразным раствором соли Р. В результате химической реакции цинк приобретает отрицательный заряд, а угольный стержень - положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле. В таком источнике тока уголь является положительным электродом, а цинковый сосуд - отрицательным электродом.

Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой - отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В них используется раствор щёлочи и пластины: одна - из спрессованного железного порошка, а вторая - из пероксида никеля.
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие. Чтобы электроэнергию доставить от источника до потребителя, необходимы соединительные проводники, а чтобы её поступлением можно было управлять, нужны рубильники, выключатели, кнопки и т.д.

Обрати внимание!

Источник электроэнергии, потребители электроэнергии, замыкающие устройства, соединённые между собой проводами, называют электрической цепью.

Чтобы в цепи существовал электрический ток, она должна быть замкнутой, т.е. состоять из проводников электричества. Если в каком-либо месте провод разорвётся, то ток в цепи прекратится. На этом основано действие выключателей.

Обрати внимание!

Чертежи, на которых изображаются способы соединения электрических приборов в цепь, называют схемами.

Приборы на схемах обозначают условными знаками. Вот некоторые из них:

Гальванический элемент или аккумулятор

Батарея элементов и аккумуляторов

Электрическая лампочка накаливания

Электрический звонок

Резистор

Двигатель

Генератор

Пересечение проводов без соединения

Соединение проводов

Источник тока - это устройство, которое преобразовывает разнообразные виды энергии в электричество. Условно можно разделить такие источники на физические и химические.

Источник тока и его история

Первые химические гальванические элементы и аккумуляторы появились в девятнадцатом веке (элементы Лекланше и батареи Вольта). Однако примерно до сороковых годов двадцатого века преимущества, который давал источник тока, фактически не использовались. Существовало всего несколько гальванических пар. Но уже буквально с середины сороковых годов, благодаря стремительному развитию радиоэлектроники, появились почти три десятка новых типов пар гальванических элементов. Теоретически же источник тока - это реализация свободной энергии практически любой химической реакции восстановителя и окислителя. Поэтому есть возможность реализовать более тысячи гальванических пар. Источник тока физический получил распространение в промышленности в начале шестидесятых годов прошлого века. Это обусловлено специфическими требованиями техники в производстве. К концу шестидесятых большинство технически развитых стран имели термогенераторы, термоэмиссионные генераторы и атомные батареи.

Источник тока и его основные характеристики

Технический прогресс стимулировал разработку источников электропитания, особенно автономных. Источник тока сегодня можно встретить в переносных осветительных приборах, радиоприемниках, магнитофонах, телевизорах, в медицинской аппаратуре, в автомобилях, самолетах, тракторах, в космических кораблях и во многих других вещах. Основными характеристиками и параметрами источников электроэнергии можно назвать: энергоемкость, удельную энергоемкость, мощность номинальную и удельную, КПД (коэффициент полезного действия), срок службы, надежность, частоту, способность к перегрузкам, напряжение, номинальный ток, стоимость.

Виды источников тока

В соответствии со способностью аккумулировать энергию химические источники делятся на первичные, резервные, вторичные и электрохимические генераторы. Существует также источник тока на полевом транзисторе. Следует рассмотреть каждый вид подробнее.

Источник тока первичный

Такие источники допускают только однократное использование химической энергии реагентов. Катод (положительный электрод) и анод (отрицательный электрод) разделены в жидком или же пастообразном состоянии электролитом. И катод, и анод имеют между собой гальваническую связь.

Источник тока вторичный

В подобных аккумуляторах или аккумуляторных батареях допускается многократное использование химической энергии, от сотен раз до десятков тысяч циклов. Электролит и электроды постоянно находятся в состоянии электрического контакта друг с другом. На сегодняшний день разработаны специфические условия хранения подобных батарей.

Источник тока резервный

Хотя резервные источники допускают только один цикл, электролит и электроды у них не связаны гальванически. Они сохраняются либо в жидком состоянии (в металлических или стеклянных ампулах), либо в жестком твердом.

Источник тока

Рисунок 2.1 - Обозначение на схемах источника тока

Исто́чник то́ка (также генератор тока ) - двухполюсник , который создаёт ток , не зависящий от сопротивления нагрузки, к которой он присоединён. В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к , чем к источнику тока.

На рисунке 1 представлена схема замещения триполярного транзистора, содержащая источник тока (с указанием S·U бэ; стрелка в кружке указывает положительное направление тока источника тока), генерирующий ток S·U бэ, т. е. ток, зависящий от напряжения на другом участке схемы.

Свойства

Идеальный источник тока

Применение

Реальные генераторы тока имеют различные ограничения (например по напряжению на его выходе), а также нелинейные зависимости от внешних условий. Например, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Источники тока широко используются в аналоговой схемотехнике , например, для питания измерительных мостов , для питания каскадов дифференциальных усилителей , в частности операционных усилителей .

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем . Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (сокращенно ИТУН)
  • Источник тока, управляемый током (сокращенно ИТУТ)

Источники тока, устройства, преобразующие различные виды энергии в электрическую. По виду преобразуемой энергии И. т. условно можно разделить на химические и физические. Сведения о первых химических И. т. (гальванических элементах и аккумуляторах) относятся к 19 в. (например, батарея Вольта, элемент Лекланше). Однако вплоть до 40-х гг. 20 в. в мире было разработано и реализовано в конструкциях не более 5 типов гальванических пар. С середины 40-х гг. вследствие развития радиоэлектроники и широкого использования автономных И. т. создано ещё около 25 типов гальванических пар. Теоретически в И. т. может быть реализована свободная энергия химических реакции практически любого окислителя и восстановителя, а следовательно, возможна реализация несколько тысяч гальванических пар. Принципы работы большинства физических И. т. были известны уже в 19 в. В дальнейшем вследствие быстрого развития и совершенствованиятурбогенераторы и гидрогенераторы стали основными промышленными источниками электроэнергии. Физические И. т., основанные на других принципах, получили промышленное развитие лишь в 50-60-х гг. 20 в., что обусловлено возросшими и достаточно специфическими требованиями современной техники. В 60-х гг. технически развитые страны уже имели промышленные образцы термогенераторов, термоэмиссионных генераторов (СССР, ФРГ, США), атомных батарей

Химическими источниками тока принято называть устройства, вырабатывающие электрический ток за счёт энергии окислительно-восстановительных реакций химических реагентов. В соответствии с эксплуатационной схемой и способностью отдавать энергию в электрическую сеть химические И. т. подразделяются на первичные, вторичные и резервные, а также электрохимические генераторы.

Физическими источниками тока называют устройства, преобразующие тепловую, механическую, электромагнитную энергию, а также энергию радиационного излучения и ядерного распада в электрическую. В соответствии с наиболее часто употребляемой классификацией к физическим И. т. относят: электромашинные генераторы, термоэлектрические генераторы, термоэмиссионные преобразователи, МГД-генераторы, а также генераторы, преобразующие энергию солнечного излучения и атомного распада

Для поддержания электрического тока в проводнике необходим какой-то внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника.
Такими источниками энергии служат так называемые источники электрического тока, обладающие определенной электродвижущей силой, которая создает и длительное время поддерживает разность потенциалов на концах проводника.

Численно электродвижущая сила измеряется работой, совершаемой источником электрической энергии при переносе единичного положительного заряда по всей замкнутой цепи.


Если источник энергии, совершая работу A, обеспечивает перенос по всей замкнутой цепи заряда q, то его электродвижущая сила (Е) будет равна

Внутреннее сопротивление источника тока - количественная характеристика источника тока, которая определяет величину энергетических потерь при прохождении через источник электрического тока.
Внутреннее сопротивление имеет размерность сопротивления и измеряется в Омах.
При прохождении электрического тока через источник происходят те же процессы диссипации энергии, и при прохождении через сопротивление нагрузки. Благодаря этим процессам напряжение на клеммах источника тока не равна электродвижущей силе, а зависит от величины тока, а, следовательно, от нагрузки. При небольших значениях силы тока эта зависимость линейная и ее можно представить в виде

8) Мощность и КПД источника равен отношению напряжения во внешней цепи к величине ЭДС.Электри́ческая мо́щность - физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Полезная мощность изменяется в зависимости от внешнего сопротивления более сложным образом. Действительно, Pполезн=0 при крайних значениях внешнего сопротивления: при R=0 и R®¥. Таким образом, максимум полезной мощности должен приходиться на промежуточные значения внешнего сопротивления.

9) Хими́ческий исто́чник то́ка (аббр. ХИТ ) - источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию.

Принцип действия: Основу химических источников тока составляют два электрода (отрицательно заряженный анод, содержащий восстановитель, и положительно заряженный катод, содержащий окислитель), контактирующие с электролитом. Между электродами устанавливается разность потенциалов - электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно-разделённых процессов: на отрицательном аноде восстановитель окисляется, образующиеся свободные электроны переходят по внешней цепи к положительному катоду, создавая разрядный ток, где они участвуют в реакции восстановления окислителя. Таким образом, поток отрицательно заряженных электронов по внешней цепи идет от анода к катоду, то есть от отрицательного электрода (отрицательного полюса химического источника тока) к положительному. Это соответствует протеканию электрического тока в направлении от положительного полюса к отрицательному, так как направление тока совпадает с направлением движения положительных зарядов в проводнике.

В современных химических источниках тока используются:

· в качестве восстановителя (материал анода) - свинец Pb, кадмий Cd, цинк Zn и другие металлы;

· в качестве окислителя (материал катода) - оксид свинца(IV) PbO 2 , гидроксооксид никеля NiOOH, оксид марганца(IV) MnO 2 и другие;

· в качестве электролита - растворы щелочей, кислот или солей.

2) Широкое распространение получили марганцово – цинковые (МЦ) сухие элементы с деполяризатором из диоксида марганца.
Сухой элемент стаканчикового типа (рис. 3) имеет цинковый сосуд прямоугольной или цилиндрической формы, являющийся отрицательным электродом. Внутри него помещён положительный электрод в виде угольной
палочки или пластинки, которая находится в мешке, наполненном смесью диоксида марганца с порошком угля или графита. Уголь или графит добавляют для уменьшения сопротивления. Угольный стержень и мешок с деполяризующей массой называют агломератом. В качестве электролита используется паста, составленная из нашатыря (NH4Cl), крахмала и некоторых других веществ. У стаканчиковых элементов центральный вывод является положительным полюсом.

Кислотные свинцовые аккумуляторы являются наиболее распространенными среди вторичных химических источников тока, обладая сравнительно высокой мощностью в сочетании с надежностью и относительно низкой стоимостью. Эти аккумуляторы находят разнообразное практическое применение. Своей популярностью и широким маштабом производства они обязаны стартерным батареям, предназначенным для различных средств передвижения и прежде всего автомобилей. В этой области их монопольное положение устойчиво и сохраняется долгое время. На базе свинцовых аккумуляторов комплектуется подавляющее большинство стационарных и значительная часть вагонных батарей. Успешно конкурируют с щелочными тяговые свинцовые аккумуляторы.

ле́зо-ни́келевый аккумуля́тор - это вторичный химический источник тока, в котором железо - анод, электролитом является водный раствор гидроксида натрияили калия (с добавками гидроксида лития), катод - гидрат окиси никеля(III).

Активный материал содержится в никелированных стальных трубках или перфорированных карманах. С точки зрения стоимости и удельной энергоемкости, они близки к литий-ионным аккумуляторам, а с точки зрения саморазряда, эффективности и напряжения - к NiMH аккумуляторам. Это достаточно выносливые аккумуляторы, стойкие к грубому обращению (перезаряд, глубокий разряд, короткое замыкание и термические удары) и имеющие очень длинный срок службы.

Их использование стало снижаться с момента остановки производства из-за пожара на заводе/лаборатории Эдисона в 1914 году , по причине плохих показателей работы батарей при низких температурах, плохого удержания заряда и выфсокой стоимости производства, сравнимой с лучшими герметизированными свинцово-кислотными аккумуляторами и до 1/2 стоимости NiMH аккумуляторов. Однако в связи с ростом стоимости свинца в последние годы, из-за чего цена свинцовых аккумуляторов значительно поднялась, цены практически сравнялись.

При сравнении аккумуляторов со свинцово-кислотными следует помнить, что допустимый эксплуатационный разряд свинцово-кислотного аккумулятора в разы меньше, чем теоретическая полная ёмкость, а железоникелевого - очень близок к ней. Поэтому реальная эксплуатационная ёмкость железоникелевого аккумулятора, при равной теоретической полной ёмкости, может быть в разы (в зависимости от режима) больше, чем у свинцово-кислотного.

10) Электротехнические генераторы постоянного и переменного тока .

Машины, преобразующие механическую энергию в электрическую, называются генераторами.
Простейший генератор постоянного тока (рис. 1) представляет собой помещенную между полюсами магнита рамку из проводника, концы которого присоединены к изолированным полукольцам, называемым пластинами коллектора. К полукольцам (коллектору) прижимаются положительная и отрицательная щетки, которые замыкаются внешней цепью через электрическую лампочку. Для работы генератора рамку проводника с коллектором необходимо вращать. В соответствии с правилом правой руки при вращении рамки проводника с коллектором в ней будет индуктироваться электрический ток, изменяющий свое направление через каждые пол-оборота, так как магнитные силовые линии каждой стороной рамки будут пересекаться то о одном, то в другом направлении. Вместе с этим через каждые пол-оборота изменяется контакт концов проводника рамки и полуколец коллектора со щетками генератора. Во внешнюю цепь ток будет идти в одном направлении, изменяясь только по величине от 0 до максимума. Таким образом, коллектор в генераторе служит для выпрямления переменного тока, вырабатываемого рамкой. Для того чтобы электрический ток был постоянным не только по направлению, но и по величине, (по величине - приблизительно постоянным), коллектор делают из многих (36 и более) пластин, а проводник представляет собой много рамок или секций, выполненных в виде обмотки якоря.


Рис. 1. Схема простейшего генератора постоянного тока: 1 - полукольцо или коллекторная пластина; I - рама проводника; 3 - щетка генератора

Принципиальное устройство простейшего генератора переменного тока показано на рис. 4. В этом генераторе концы рамки проводника присоединяются каждый к своему кольцу, а к кольцам прижимаются щетки генератора. Щетки замыкаются внешней цепью через электрическую лампочку. При вращении рамки с кольцами в магнитном поле генератор даст переменный ток, изменяющий через каждые пол-оборота величину и направление. Такой переменный ток называется однофазным. В технике применяются генераторы трех-

Предисловие.

Что же такое электрический ток и что необходимо для его возникновения и существования в течение нужного нам времени?

Слово «ток» означает движение или течение чего-то. Электричес-ким током называется упорядоченное (направленное) движение заряженных частиц. Чтобы получить электрический ток в провод-нике, надо создать в нем электрическое поле. Чтобы электричес-кий ток в проводнике существовал длительное время, необходи-мо все это время поддерживать в нем электрическое поле. Элек-трическое поле в проводниках создается и может длительное вре-мя поддерживаться источниками электрического тока . В настоя-щее время человечество использует четыре основные источника тока: статический, химический, механический и полупроводнико-вый(солнечные батареи), но во всяком из них совершается рабо-та по разделению положительно и отрицательно заряженных частиц. Раздельные частицы накапливаются на полюсах источни-ка тока, - так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, другой - отрицательно. Если полюсы соединить проводником, то под действием поля свободные заря-женные частицы в проводнике будут двигаться, возникнет элек­трический ток.

Электрический ток.

Источники электрического тока.

До 1650 года - времени, когда в Европе пробудился боль-шой интерес к электричеству, - не было известно способа легко получать большие электрические заряды. С ростом числа ученых, заинтересовавшихся исследованиями электричества, можно было ожидать создания все более простых и эффективных способов получения электрических зарядов.

Отто фон Герике придумал первую электрическую машину. Он налил расплавленную серу внутрь полого стеклянного шара, а затем, когда сера затвердела, разбил стекло, не догадываясь о том, что сам стеклянный шар с неменьшим успехом мог бы пос-лужить его целям. Затем Герике укрепил серный шар так, как показано на рис.1, чтобы его можно было вращать рукояткой. Для получения заряда надо было одной рукой вращать шар, а другой - прижимать к нему кусок кожи. Трение поднимало потен-циал шара до величины, достаточной, чтобы получать искры длиной в несколько сантиметров.

Эта машина оказала боль-

шую помощь в эксперименталь-

ном изучении электричества, но

еще более трудные задачи «хра-

нения» и «запасания» электри-

ческих зарядов удалось решить

лишь благодаря последующему

прогрессу физики. Дело в том, что мощные заряды, которые

можно было создавать на телах с помощью электростатической

машины Герике, быстро исчезали. Вначале думали, что причиной этого является «испарение» зарядов. Для предотвращения

«испарения» зарядов было предложено заключить заряженные тела в закрытые сосуды, сделанные из изолирующего материала. Естественно, в качестве таких сосудов были выбраны стеклянные бутылки, а в качестве электризуемого материала - вода, поскольку ее было легко наливать в бутылки. Чтобы можно было зарядить воду, не открывая бутылку, сквозь пробку был пропущен гвоздь. Замысел был хорош, но по причинам, в то время непонятным, прибор работал не столь уж удачно. В результате интенсивных экспериментов вскоре же было открыто, что запа­сенный заряд и тем самым силу электрического удара можно резко увеличить, если бутылку изнутри и снаружи покрыть проводящим материалом, например тонкими листами фольги. Более того, если соединить гвоздь с помощью хорошего про­водника со слоем металла внутри бутылки, то оказалось, что можно вообще обойтись без воды. Это новое «хранилище» электричества было изобретено в 1745 году в голландском го­роде Лейдене и получило название лейденской банки (рис.2).

Первый кто от­крыл иную возможность полу-чения электричества, не-жели с помощью элек­три-зации трением, был италь-янский ученый Луиджи Гальвани (1737-1798). Он был по специальности биолог, но ра­ботал в лаборатории, где прово-дились опыты с электричеством. Галь­вани нблю-дал явление, которое было известно многим еще до него; оно заключалось в том, что если ножной нерв мертвой лягушки возбудить искрой от электрической машины, то начинала сокращаться вся лапка. Но однажды Гальвани заметил, что лапка пришла в движение, когда с нервом лапки соприкасался только стальной скальпель. Удивительнее всего было то, что между электрической машиной и скаль-пелем не было никакого контакта. Это поразительное открытие заставило Гальвани поставить ряд опытов для обнаружения при-чины электрического тока. Один из экспериментов был поставлен Гальвани с целью выяснить, вызывает ли такие же движения в лапке электричество молнии. Для этого Гальвани подвесил на латунных крючках несколько лягушачьих лапок в окне, закрытом железной решеткой. И он нашел, в противоположность своим ожиданиям, что сокращения лапок происходят в любое время, вне всякой зависимости от состояния погоды. Присутствие рядом электрической машины или другого источника электричества оказалось не нужным. Гальвани установил далее, что вместо железа и латуни можно использовать любые два разнородных металла, причем комбинация меди и цинка вызывала явление в наиболее отчетливом виде. Стекло, резина, смола, камень и сухое дерево вообще не давали никакого эффекта. Таким образом, возникновение тока все еще оставалось тайной. Где же появляется ток - только в тканях тела лягушки, только разнородных металлах или же в комбинации металлов и тканей? К сожалению, Гальвани пришел к заключению, что ток возникает исключительно в тканях тела лягушки. В результате его современникам понятие «животного электричества» стало казаться гораздо более реальным, чем электричества какого-либо другого происхождения.

Другой итальянский ученый Алессандро Вольта(1745-1827) окончательно доказал, что если поместить лягушачьи лапки в водные растворы некоторых веществ, то в тканях лягушки гальванический ток не возникает. В частности, это имело место для ключевой или вообще чистой воды; этот ток появляется при добавлении к воде кислот, солей или щелочей. По-видимому, наибольший ток возникал в комбинации меди и цинка, помещенных в разбавленный раствор серной кислоты. Комбинация двух пластин из разнородных металлов, погруженных в водный раствор щелочи, кислоты или соли, называется гальваническим (или химическим) элементом.

Если бы средствами для получения электродвижущей силы служили только трение и химические процессы в гальванических элементах, то стоимость электрической энергии, необходимой для работы различных машин, была бы исключительно высокой. В результате огромного количества экспериментов учёными разных стран были сделаны открытия, позволившие создать механические электрические машины, вырабатывающие относительно дешёвую электроэнергию.

В начале 19 века Ганс Христиан Эрстед сделал открытие совершенно нового электрического явления, заключавшегося в том, что при прохождении тока через проводник вокруг него образуется магнитное поле. Спустя несколько лет, в 1831 году, Фарадей сделал ещё одно открытие, равное по своей значимости открытию Эрстеда. Фарадей обнаружил, что когда движущийся проводник пересекает силовые линии магнитного поля, в проводнике наводится электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник. Наведённая ЭДС меняется прямо пропорционально скорости движения, числу проводников, а также напряжённости магнитного поля. Иначе говоря, наведённая ЭДС прямо пропорциональна числу силовых линий, пересекаемых проводником в единицу времени. Когда проводник пересекает 100000000 силовых линий за 1 сек, наведённая ЭДС равна 1 Вольту. Перемещая вручную одиночный проводник или проволочную катушку в магнитном поле, больших токов получить нельзя. Более эффективным способом является намотка провода на большую катушку или изготовление катушки в виде барабана. Катушку затем насаживают на вал, располагаемый между полюсами магнита и вращаемый силой воды или пара. Так, в сущности, и устроен генератор электрического тока, который относится к механическим источникам электрического тока, и активно используется человечеством в настоящее время.
Солнечную энергию люди используют с древнейших времён. Ещё в 212 г. до н. э. с помощью концентрированных солнечных лучей они зажигали священный огонь у храмов. Согласно легенде приблизительно в то же время греческий учёный Архимед при защите родного города поджёг паруса кораблей римского флота.

Солнце представляет собой удалённый от Земли на расстояние 149,6 млн км термоядерный реактор, излучающий энергию, которая поступает на Землю главным образом в виде электромагнитного излучения. Наибольшая часть энергии излучения Солнца сосредоточена в видимой и инфракрасной части спектра. Солнечная радиация - это неисчерпаемый возобновляемый источник экологически чистой энергии. Без ущерба для экологической среды может быть использовано 1,5 % всей падающей на землю солнечной энергии, т.е. 1,62 *10 16 киловатт\часов в год, что эквивалентно огромному количеству условного топлива - 2 *10 12 т.

Усилия конструкторов идут по пути использования фотоэлементов для прямого преобразования солнечной энергии в электрическую. Фотопреобразователи, называемые также солнечными батареями, состоят из ряда фотоэлементов, соединенных последовательно или параллельно. Если преобразователь должен заряжать аккумулятор, питающий, например, радиоустройство в облачное время, то его подключают параллельно к выводам солнечной батареи (рис. 3). Элементы применяемые в солнечных батареях, должны обладать большим КПД, выгодной спектральной характеристикой, малой стоимостью, простой конструкцией и небольшой массой. К сожалению, только немногие из известных на сегодня фотоэлементов отвечают хотя бы частично этим требованиям. Это прежде всего некоторые виды полупроводниковых фотоэлементов. Простейший из них - селеновый. К сожалению, КПД лучших селеновых фотоэлементов мал(0,1...1 %).

 


Читайте:



» «Наша Масленица, ты широкая, в детский сад к нам пришла и весну принесла!

» «Наша Масленица, ты широкая, в детский сад к нам пришла и весну принесла!

Оксана Перерва Сценарий развлечения «Масленица» в старшей группе Цель : продолжать знакомить детей с народными праздниками, создать бодрое...

Значение слова стрешневы в краткой биографической энциклопедии

Значение слова стрешневы в краткой биографической энциклопедии

СТРЕШНЕВ МАКСИМ ФЕДОРОВИЧ. Ум. в 1657. Был несколько лет воеводой в Верхотурье. В 1629 приобрел у Поместного приказа находившиеся к югу от Москвы...

Мужчина-крыса - женщина-тигр

Мужчина-крыса - женщина-тигр

В этой теме: Характер рожденных в Год Тигра Это сильные личности, бунтари или руководители. Их трудно заставить подчиняться, зато руководят они...

Договор банковского вклада для физических лиц

Договор банковского вклада для физических лиц

Договор депозитного вклада (для физических лиц) гор.__________________ " "_________________20___г. Коммерческий банк "_______" (условно),...

feed-image RSS